Enhancement of broad-spectrum disease resistance in wheat through key genes involved in systemic acquired resistance.

Front Plant Sci

State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Systemic acquired resistance (SAR) is an inducible disease resistance phenomenon in plant species, providing plants with broad-spectrum resistance to secondary pathogen infections beyond the initial infection site. In , SAR can be triggered by direct pathogen infection or treatment with the phytohormone salicylic acid (SA), as well as its analogues 2,6-dichloroisonicotinic acid (INA) and benzothiadiazole (BTH). The SA receptor non-expressor of pathogenesis-related protein gene 1 (NPR1) protein serves as a key regulator in controlling SAR signaling transduction. Similarly, in common wheat (), pathogen infection or treatment with the SA analogue BTH can induce broad-spectrum resistance to powdery mildew, leaf rust, head blight, and other diseases. However, unlike SAR in the model plant or rice, SAR-like responses in wheat exhibit unique features and regulatory pathways. The acquired resistance (AR) induced by the model pathogen pv. strain DC3000 is regulated by , but its effects are limited to the adjacent region of the same leaf and not systemic. On the other hand, the systemic immunity (SI) triggered by pv. () or pv. () is not controlled by or SA, but rather closely associated with jasmonate (JA), abscisic acid (ABA), and several transcription factors. Furthermore, the BTH-induced resistance (BIR) partially depends on activation, leading to a broader and stronger plant defense response. This paper provides a systematic review of the research progress on SAR in wheat, emphasizes the key regulatory role of NPR1 in wheat SAR, and summarizes the potential of pathogenesis-related protein () genes in genetically modifying wheat to enhance broad-spectrum disease resistance. This review lays an important foundation for further analyzing the molecular mechanism of SAR and genetically improving broad-spectrum disease resistance in wheat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10921362PMC
http://dx.doi.org/10.3389/fpls.2024.1355178DOI Listing

Publication Analysis

Top Keywords

disease resistance
16
broad-spectrum disease
12
acquired resistance
12
resistance
10
resistance wheat
8
systemic acquired
8
broad-spectrum resistance
8
pathogen infection
8
infection treatment
8
pathogenesis-related protein
8

Similar Publications

This comprehensive review examines the versatile applications and effects of Moringa oleifera across multiple fish species in aquaculture systems amid growing challenges of rising feed costs and antimicrobial resistance. M. oleifera, commonly called the Miracle tree, contains an exceptional nutritional profile with high protein content (22.

View Article and Find Full Text PDF

Prevalence and molecular characterization of methicillin-resistant Staphylococcus aureus (MRSA) in acute and chronic sinusitis.

Mol Biol Rep

September 2025

Department of Medical Lab Technology, College of health and medical technology, Sulaimani Polytechnic University, Sulaimani, 46001, Kurdistan Region, Iraq.

Background: Sinusitis is a common respiratory infection increasingly associated with antibiotic-resistant Staphylococcus aureus, posing significant treatment challenges. The emergence of methicillin-resistant S. aureus (MRSA) in sinus infections necessitates comprehensive profiling of resistance patterns to guide effective therapy.

View Article and Find Full Text PDF

Purpose Of Review: Despite major advances in the treatment and prevention of atherosclerotic cardiovascular disease (ASCVD), a substantial burden of residual risk remains Obesity has been redefined as a primary and independent drivers of cardiovascular morbidity and mortality warranting focused attention.

Recent Findings: Obesity is now recognized as a chronic disease and a central contributor to residual cardiovascular risk through mechanisms including systemic inflammation, insulin resistance, dyslipidemia, and endothelial dysfunction. This review addresses the limitations of conventional obesity management and highlights emerging pharmacological therapies targeting the underlying adiposopathy.

View Article and Find Full Text PDF

Purpose: Moyamoya disease (MMD) is a chronic cerebrovascular disorder characterized by progressive arterial stenosis and fragile collateral formation, elevating stroke risk. Revascularization is the standard treatment, yet up to 27% of patients experience ischemic events within a year due to bypass insufficiency. While digital subtraction angiography (DSA) remains the gold standard for assessing bypass function, it is invasive and time-consuming.

View Article and Find Full Text PDF

Injectable Plant Phosphate Coordination Compound-Based Adhesive Hydrogel Accelerates Osteoporotic Fracture Healing by Restoring Osteoclast/Osteoblast Imbalance.

ACS Nano

September 2025

Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical Univer

Osteoporotic fractures are notoriously difficult to heal due to an imbalance between osteoblasts and osteoclasts. Current treatments often have limited efficacy or adverse side effects, necessitating safer and more effective solutions. Here, we developed an injectable plant-derived phosphate coordination compound-based adhesive hydrogel (MgPA-Gel) to restore bone homeostasis by integrating magnesium ions (Mg)-phytic acid (PA) nanoparticles with aminated gelatin (Gel-NH) and aldehydated starch (AS).

View Article and Find Full Text PDF