98%
921
2 minutes
20
Quinoa (Chenopodium quinoa Willd.) microgreens are widely consumed as healthy vegetables around the world. Although soluble dietary fibers exist as the major bioactive macromolecules in quinoa microgreens, their structural characteristics and bioactive properties are still unclear. Therefore, the structural characteristics and bioactive properties of soluble dietary fibers from various quinoa microgreens (QMSDFs) were investigated in this study. The yields of QMSDFs ranged from 38.82 to 52.31 mg/g. Indeed, all QMSDFs were predominantly consisted of complex pectic-polysaccharides, e.g., homogalacturonan (HG) and rhamnogalacturonan I (RG I) pectic domains, with the molecular weights ranged from 2.405 × 10 to 5.538 × 10 Da. In addition, the proportions between RG I and HG pectic domains in all QMSDFs were estimated in the range of 1: 2.34-1: 4.73 (ratio of galacturonic acid/rhamnose). Furthermore, all QMSDFs exhibited marked in vitro antioxidant, antiglycation, prebiotic, and immunoregulatory effects, which may be partially correlated to their low molecular weights and low esterification degrees. These findings are helpful for revealing the structural and biological properties of QMSDFs, which can offer some new insights into further development of quinoa microgreens and related QMSDFs as value-added healthy products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2024.114108 | DOI Listing |
Crit Rev Food Sci Nutr
June 2025
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu, China.
Quinoa ( Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens.
View Article and Find Full Text PDFFood Res Int
July 2024
Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China. Electronic address: wudingtao@cdu
Pectic polysaccharides are one of the most vital functional ingredients in quinoa microgreens, which exhibit numerous health-promoting benefits. Nevertheless, the detailed information about the structure-function relationships of pectic polysaccharides from quinoa microgreens (QMP) remains unknown, thereby largely restricting their applications as functional foods or fortified ingredients. Therefore, to unveil the possible structure-function relationships of QMP, the mild alkali de-esterification was utilized to modify QMP, and then the correlations of esterification degrees of native and modified QMPs to their biological functions were systematically investigated.
View Article and Find Full Text PDFFood Res Int
April 2024
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China. Electronic address:
Quinoa (Chenopodium quinoa Willd.) microgreens are widely consumed as healthy vegetables around the world. Although soluble dietary fibers exist as the major bioactive macromolecules in quinoa microgreens, their structural characteristics and bioactive properties are still unclear.
View Article and Find Full Text PDFNutrients
January 2022
Agricultural Research Station, Virginia State University, Petersburg, VA 23806, USA.