Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, extensive research has been conducted on bismuth tungstate (BiWO) in the field of photocatalysis owing to its unique crystal structure and favorable bandgap. This study offers a comprehensive review of the research on BiWO-based photocatalysts from 2007 to 2022 using bibliometric analysis. The analysis utilized the Web of Science Core Collection Database and encompassed a dataset of 2064 publications. The bibliometric analysis and science mapping were carried out using the bibliometix R-package and CiteSpace software. This analysis examined and discussed the network of relationships among countries, journals, organizations, authors, and keywords pertaining to the topic and subtopics under investigation. The findings demonstrate that China has played a significant role in this research area and has formed close collaborations with other countries. The identification of highly-cited emerging terms suggests that enhancing the photocatalytic performance of BiWO-based nanomaterials is a primary research focus. Moreover, there has been increasing interest in exploring the synergistic effects of photocatalysis and adsorption as a means to improve catalytic efficiency. This study provides valuable insights for researchers seeking a deeper understanding of BiWO-based photocatalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912354PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e27115DOI Listing

Publication Analysis

Top Keywords

biwo-based photocatalysts
12
bibliometric analysis
8
progress trends
4
trends updates
4
updates pollutants
4
pollutants removal
4
biwo-based
4
removal biwo-based
4
photocatalysts visible
4
visible light
4

Similar Publications

A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.

View Article and Find Full Text PDF

Construction of melem/BiVO/g-CN photocatalyst with a conjugated S-scheme charge transfer pathway for boosting photocatalytic activity under LED light irradiation.

Environ Res

September 2025

Center for High Technology Development, Nguyen Tat Thanh University, Ho Chi Minh City Hi-Tech Park, Ho Chi Minh City, Vietnam; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam. Electronic address:

The development of novel multijunction heterostructure photocatalysts is critical for the efficient degradation of organic pollutants, attributed to their ability to enhance the separation of photogenerated electron-hole pairs. In our study, a ternary composite, melem/BiVO/g-CN (BVO/CNMH), was synthesized via an acid-soaking method followed by calcination, using g-CN as a sacrificial precursor in the presence of BiVO. This approach yielded a porous, interconnected architecture in BVO/CNMH.

View Article and Find Full Text PDF

Towards durable photocatalytic seawater splitting: design strategies and challenges.

Chem Commun (Camb)

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070

Photocatalytic seawater splitting (PSWS), which utilizes abundant solar and ocean resources, is one of the most promising technologies for sustainable hydrogen production. However, the complex composition of seawater significantly limits the durability and activity of photocatalysts. In this review, we first identify the primary factors that contribute to photocatalyst deactivation during PSWS, including chloride induced corrosion and loss of active sites, and light shielding caused by precipitation of metal cation salts.

View Article and Find Full Text PDF

In view of Corona pandemic, scientists have taken significant efforts to study and recognize the peculiarities of the SARS-CoV-2 outbreak in order to prevent it from spreading. It was discovered that the virus is spreading in many places and nations that have made significant progress in addressing environmental pollution or are not subject to dusty storms. Infections are growing again in the same country, with varied densities of sick persons depending on the weather and windy season.

View Article and Find Full Text PDF

A tetrahydroxydiboron-mediated radical cyclization of unactivated alkenes under photoinduced reaction conditions was developed to synthesize ring-fused quinazolinones for the first time. The concise, mild and photocatalyst- and oxidant-free conditions, as well as the good functional group tolerance, render this protocol a green and convenient strategy for synthesizing polycyclic ring-fused quinazolinones. Mechanistic studies indicated that the process might involve a radical pathway.

View Article and Find Full Text PDF