Modular Strategy for Constructing -Cage[]arenes, -Cage[]arenes, and -Bimacrocyclic-Arenes.

Org Lett

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Here, we present a versatile modular strategy for crafting novel covalent organic cages (-cage[]arenes and -cage[]arenes, = 3,4) and bimacrocycles (-bimacrocyclic-arenes) with stable backbones and modifiable rims. These structures can be synthesized from commercially available aromatic multialdehydes in a three-step process: quantitative bromination, Suzuki-Miyaura reaction (yielding over 60%), and a rapid one-pot Friedel-Crafts reaction with paraformaldehyde. Notably, the cage[]arenes exhibit a well-defined prismatic shape, and the bimacrocyclic-arenes display both dimeric and monomeric configurations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c00033DOI Listing

Publication Analysis

Top Keywords

modular strategy
8
-cage[]arenes -cage[]arenes
8
strategy constructing
4
-cage[]arenes
4
constructing -cage[]arenes
4
-cage[]arenes -bimacrocyclic-arenes
4
-bimacrocyclic-arenes versatile
4
versatile modular
4
strategy crafting
4
crafting novel
4

Similar Publications

[2,1]-Azaboranaphthalenes represent unique boron-nitrogen (BN) isosteres of naphthalenes, attracting interest for the development of molecules with enhanced therapeutic potency. The existing synthetic strategies are generally two-component reactions with harsh conditions. Here we report an organocatalysed three-component modular synthesis of ring-fused BN isosteres and BN-2,1-azaboranaphthalenes following ring expansion of unstrained cyclic ketones (n = 4-8) via Wolff-type rearrangement.

View Article and Find Full Text PDF

Programmable Dual-Phase Electrochemical Biosensor Combines Homogeneous CRISPR/Cas12a Activation with Interfacial Poly-G Signaling for miRNA-21 Detection.

Anal Chem

September 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.

Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.

View Article and Find Full Text PDF

Proto-SLIPS: Slippery Liquid-Infused Surfaces that Release Highly Water-Soluble Agents.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.

Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.

View Article and Find Full Text PDF

On Refining Exciton Dissociation and Charge Transport of Nonfullerene Organic Photovoltaics: from Star-Shaped Acceptors to Molecular Doping.

Adv Mater

September 2025

College of Smart Materials and Future Energy, and State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, 200438, China.

Nonfullerene acceptor-based organic solar cells have recently taken a milestone leap with power conversion efficiencies approaching 20%. A key to further boost the efficiencies up to the Shockley-Queisser limit rests upon attaining a delicate balance between exciton dissociation and charge transport. This perspective presents two seminal and reciprocal strategies developed by our group and others to reconcile the intricacy of charge carrier dynamics, spanning from intrinsic molecular structure design to extrinsic dopant exploitation.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) have emerged as promising candidates for combating drug-resistant pathogens and certain cancer types. However, their therapeutic applications are often limited by undesired hemolytic activity, while many AMPs exhibit only moderate potency. Herein, the "helical wheel rotation" strategy as a simple, cost-effective, and modular approach to optimize the pharmacological properties of amphipathic α-helical AMPs without altering their amino acid composition is explored.

View Article and Find Full Text PDF