Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Infections caused by pathogenic microorganisms have increased the need for hospital care and have thus represented a public health problem and a significant financial burden. Classical treatments consisting of traditional antibiotics face several challenges today. Anti-microbial peptides (AMPs) are a conserved characteristic of the innate immune response among different animal species to defend against pathogenic microorganisms.

Objectives: In this study, a new peptide sequence (mCHTL131-140) was designed using the in silico approach.

Methods: Cathelicidin-2 (UniprotID: Q2IAL7) was used as a potential antimicrobial protein, and a novel 10 - 12 amino acids sequence AMP was designed using bioinformatics tools and the AMP databases. Then, the anti-bacterial, anti-biofilm, and anti-fungal properties of the peptide, as well as its hemolytic activity and cytotoxicity towards human fibroblast (HDF) cells, were investigated in vitro.

Results: Online bioinformatics tools indicated that the peptide sequence could have anti-bacterial, anti-viral, anti-fungal, and anti-biofilm properties with little hemolytic properties. The experimental tests confirmed that mCHTL131-140 exhibited the best anti-bacterial properties against and had fair anti-fungal properties. Besides, it did not cause red blood cell lysis and showed no cytotoxicity towards HDF cells.

Conclusions: In general, the designed peptide can be considered a promising AMP to control hospital-acquired infections by .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909124PMC
http://dx.doi.org/10.5812/ijpr-141920DOI Listing

Publication Analysis

Top Keywords

peptide sequence
8
bioinformatics tools
8
anti-fungal properties
8
peptide
5
properties
5
design evaluation
4
evaluation novel
4
novel anti-microbial
4
anti-microbial peptide
4
peptide cathelicidin-2
4

Similar Publications

Glycocins are a growing family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are O- and/or S-glycosylated. Using a sequence similarity network of putative glycosyltransferases, the thg biosynthetic gene cluster was identified in the genome of Thermoanaerobacterium thermosaccharolyticum. Heterologous expression in Escherichia coli showed that the glycosyltransferase (ThgS) encoded in the biosynthetic gene cluster (BGC) adds N-acetyl-glucosamine (GlcNAc) to Ser and Cys residues of ThgA.

View Article and Find Full Text PDF

The ameliorative effect of Lactiplantibacillus plantarum SCS2 on DSS-induced murine colitis.

Arch Microbiol

September 2025

School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China.

The inhibitory effects of Lactiplantibacillus plantarum on inflammatory responses are known, but its action mechanisms in oxidative stress, immunomodulation, and intestinal homeostasis remain of interest. Accordingly, we investigated the protective effects of Lactiplantibacillus plantarum SCS2 (L. plantarum SCS2) against sodium dextran sulfate (DSS)-induced colitis in mice as well as elucidated its impact on inflammation, oxidative stress, and intestinal microbiota.

View Article and Find Full Text PDF

Multimodal Deep Learning for Generating Potential Anti-Dengue Peptides.

ACS Omega

September 2025

Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.

Dengue virus remains a significant global health threat, imposing a substantial disease burden on nearly half of the world's population. The urgent need for effective antiviral therapeutics, including therapeutic peptides targeting the Dengue virus, is critical in the current healthcare landscape. However, the availability of anti-Dengue peptides (ADPs) data remains limited in existing data sets, posing a challenge for computational modeling and discovery.

View Article and Find Full Text PDF

Introduction: Autoimmune uveitis is a sight-threatening inflammatory eye disease driven by immune dysregulation. We previously introduced a therapeutic strategy involving the induction of retinal-antigen-specific regulatory T cells (Tregs) via αCD4 antibody injection followed by administration of the retinal self-peptide IRBP1-20, which effectively suppresses inflammation during the onset of experimental autoimmune uveitis (EAU).

Methods: We evaluated the long-term therapeutic efficacy of this approach in a chronic EAU model.

View Article and Find Full Text PDF

4-Octyl Itaconate ameliorates diesel exhaust particle-induced oxidative stress in nasal epithelial cells.

Front Immunol

September 2025

Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.

Background And Objective: Particulate matters such as diesel exhaust particles induce oxidative stress in cells and thereby have a negative impact on health. The aim of this study was to test whether the membrane-permeable, anti-inflammatory metabolite 4-Octyl Itaconate can counteract the oxidative stress induced by diesel exhaust particles and to analyze the downstream-regulated pathways both in human nasal epithelial cells and PBMCs.

Methods: Human nasal epithelial cells were cultured from nasal swabs, and the response of the cells to diesel exhaust particles either alone or in combination with 4-Octyl Itaconatee was investigated using RNA sequencing, qPCR, and cytokine measurement.

View Article and Find Full Text PDF