Ultrahigh-strength silicone aerogels reinforced by an armor-like epoxy framework via a temperature-controlled sequential reaction strategy.

J Colloid Interface Sci

Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Chemical Engineering, East China University of Science and Technology,

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aerogels with low density and high porosity are extremely attractive for high-performance insulation, but their brittleness, complicated fabrication, and poor mechanical properties greatly limit their practical applications. Herein, we report an ultrahigh-strength silicone aerogel with an armor-like epoxy framework via a temperature-controlled sequential reaction strategy. The key to this synthesis is forming a Si-O-Si framework via the polycondensation of silanes at 100 °C, followed by in-situ armoring an epoxy framework via an intermolecular cyclization at an elevated temperature of 150 °C. Owing to the enhanced framework, the resulting aerogel could withstand capillary tension in the drying process, enabling it to be dried at ambient pressure without shrinkage. The obtained aerogel possesses a tunable density of 0.17-0.45 g/cm and ultrahigh-strength with compressive modulus up to 37.8-244.3 MPa, which surpasses other polymer-reinforced silicone aerogels by a factor of five in mechanical properties. It also demonstrates outstanding thermal insulation, with an extremely low thermal conductivity from 0.025 to 0.051 W m K at room temperature, and maintains thermal characteristics across a temperature range of -20 to 300 °C. Furthermore, the aerogel composites prepared by the reinforcement of low-density fiber mats have tunable densities of 0.36-0.87 g/cm, much enhanced tensile strengths of 15.9-72.3 MPa, and low thermal conductivities at room temperature of 0.042-0.078 W m K. This study presents a cost-effective method for enhancing the production of silicone aerogel materials, offering considerable opportunities for their application in insulation, energy transport, and the aerospace sector.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.02.186DOI Listing

Publication Analysis

Top Keywords

epoxy framework
12
ultrahigh-strength silicone
8
silicone aerogels
8
armor-like epoxy
8
framework temperature-controlled
8
temperature-controlled sequential
8
sequential reaction
8
reaction strategy
8
mechanical properties
8
silicone aerogel
8

Similar Publications

This study introduces a novel optimization framework for cranial three-dimensional rotational angiography (3DRA), combining the development of a brain equivalent in-house phantom with Figure of Merit (FOM) a quantitative evaluation method. The technical contribution involves the development of an in-house phantom constructed using iodine-infused epoxy and lycal resins, validated against clinical Hounsfield Units (HU). A customized head phantom was developed to simulate brain tissue and cranial vasculature for 3DRA optimization.

View Article and Find Full Text PDF

With growing public attention to environmental issues and sustainable development, biodegradable bio-based plastics have attracted widespread interest. This study reveals the chemical-physical synergistic regulation mechanism of biodegradable PLA/PBAT blends through the synergistic modification of epoxidized natural rubber (ENR) and epoxy chain extender (ADR). Interfacial interaction analysis shows that PBAT tends to encapsulate ENR to form aggregates.

View Article and Find Full Text PDF

Self-healing protective coatings, key to anticorrosion and substrate longevity, are a hot topic in materials science. We synthesized a novel self-healing epoxy coating (GPN/EP) by spraying. It is a graphene oxide (GO)/metal-organic framework (PCN-222) epoxy composite with a sodium zinc molybdate (NZM) inhibitor and is applied to steel substrates.

View Article and Find Full Text PDF

Conductive graphene-based composites are attracting substantial interest due to their excellent mechanical and electrical properties for potential applications in electronics. Typically, such composites are fabricated by infiltrating the 3D graphene framework with the polymer matrix. However, the production of 3D graphene foams is limited by the challenges in preparing graphene dispersions, while 3D printing presents a significant breakthrough in the fabrication of desired 3D graphene-based structures.

View Article and Find Full Text PDF

This study addresses the selection and application of composite materials for aerospace systems operating in extreme environmental conditions, with a particular focus on high-altitude pseudo-satellites (HAPS). This research is centered on the development of a 400 kg autonomous aerial vehicle (AAV) capable of sustained operations at altitudes of up to 30 km. KMU-3's microstructure, comprising high-modulus carbon fibers (5-7 µm diameter) in a 5-211B epoxy matrix, provides a high specific strength (1000-2500 MPa), low density (1.

View Article and Find Full Text PDF