98%
921
2 minutes
20
Introduction: The rapid growth of omics technologies has led to the use of bioinformatics as a powerful tool for unravelling scientific puzzles. However, the obstacles of bioinformatics are compounded by the complexity of data processing and the distinct nature of omics data types, particularly in terms of visualization and statistics.
Objectives: We developed a comprehensive and free platform, CFViSA, to facilitate effortless visualization and statistical analysis of omics data by the scientific community.
Methods: CFViSA was constructed using the Scala programming language and utilizes the AKKA toolkit for the web server and MySQL for the database server. The visualization and statistical analysis were performed with the R program.
Results: CFViSA integrates two omics data analysis pipelines (microbiome and transcriptome analysis) and an extensive array of 79 analysis tools spanning simple sequence processing, visualization, and statistics available for various omics data, including microbiome and transcriptome data. CFViSA starts from an analysis interface, paralleling a demonstration full course to help users understand operating principles and scientifically set the analysis parameters. Once analysis is conducted, users can enter the task history interface for figure adjustments, and then a complete series of results, including statistics, feature tables and figures. All the graphic layouts were printed with necessary statistics and a traceback function recording the options for analysis and visualization; these statistics were excluded from the five competing methods.
Conclusion: CFViSA is a user-friendly bioinformatics cloud platform with detailed guidelines for integrating functions in multi-omics analysis with real-time visualization adjustment and complete series of results provision. CFViSA is available at http://www.cloud.biomicroclass.com/en/CFViSA/.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.108206 | DOI Listing |
Emerg Top Life Sci
September 2025
Hurdle.bio / Chronomics Ltd., London, UK.
Artificial intelligence (AI) is transforming many fields, including healthcare and medicine. In biomarker discovery, AI algorithms have had a profound impact, thanks to their ability to derive insights from complex high-dimensional datasets and integrate multi-modal datatypes (such as omics, electronic health records, imaging or sensor and wearable data). However, despite the proliferation of AI-powered biomarkers, significant hurdles still remain in translating them to the clinic and driving adoption, including lack of population diversity, difficulties accessing harmonised data, costly and time-consuming clinical studies, evolving AI regulatory frameworks and absence of scalable diagnostic infrastructure.
View Article and Find Full Text PDFBioinformatics
September 2025
Department of Mathematical Sciences, The University of Texas at Dallas, TX United States.
Motivation: The advent of next-generation sequencing-based spatially resolved transcriptomics (SRT) techniques has reshaped genomic studies by enabling high-throughput gene expression profiling while preserving spatial and morphological context. Understanding gene functions and interactions in different spatial domains is crucial, as it can enhance our comprehension of biological mechanisms, such as cancer-immune interactions and cell differentiation in various regions. It is necessary to cluster tissue regions into distinct spatial domains and identify discriminating genes that elucidate the clustering result, referred to as spatial domain-specific discriminating genes (DGs).
View Article and Find Full Text PDFJ Clin Invest
September 2025
The University of Texas at Austin, Austin, United States of America.
Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.
Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.
Brief Bioinform
August 2025
School of Computer Science, Xi'an Polytechnic University, 710048, Xi'an, China.
Cancer, with its inherent heterogeneity, is commonly categorized into distinct subtypes based on unique traits, cellular origins, and molecular markers specific to each type. However, current studies primarily rely on complete multi-omics datasets for predicting cancer subtypes, often overlooking predictive performance in cases where some omics data may be missing and neglecting implicit relationships across multiple layers of omics data integration. This paper introduces Multi-Layer Matrix Factorization (MLMF), a novel approach for cancer subtyping that employs multi-omics data clustering.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops (IPK) harbours over 3000 pea plant genetic resources (PGRs), backed up by corresponding information across 16 key agronomic and economical traits. The unbalanced structure and inconsistent format of this historical data has precluded effective leverage of genebank accessions, despite the opportunities contained in its genetic diversity. Therefore, a three-step statistical approach founded in linear mixed models was implemented to enable a rigorous and targeted data curation.
View Article and Find Full Text PDF