Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Conflict in the workplace is inevitable and disruptive to the team dynamic, ultimately leading to suboptimal patient outcomes if not addressed. Especially in breast imaging, where an interprofessional team is commonplace, spending time to address conflict is critical to building and maintaining relationships among team members. Although institutions may adopt a just culture, workplace paradigms can be challenged when two or more team members encounter misunderstandings around work-related or personal issues. Multiple factors can contribute to promoting workplace conflict, including a toxic culture (the antithesis of just culture), ineffective leadership, hierarchy, unclear expectations or goals, pre-existing assumptions and beliefs, lack of effective communication, and low levels of trust. Developing skills to engage in the difficult conversations to address and resolve conflict are essential to create an efficient and effective team to care for patients. In this manuscript, we provide tips on how each of us can build skills in conflict management and resolution, illustrated in several vignettes. These tips provide practical advice, which ultimately will translate into allowing us to provide better patient care every day.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jbi/wbaa094DOI Listing

Publication Analysis

Top Keywords

breast imaging
8
workplace conflict
8
team members
8
conflict
6
team
5
tips successful
4
successful conflict
4
conflict negotiation
4
negotiation breast
4
workplace
4

Similar Publications

A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.

View Article and Find Full Text PDF

Self-enriching nanozyme with photothermal-cascade amplification for tumor microenvironment-responsive synergistic therapy and enhanced photoacoustic imaging.

Mater Today Bio

October 2025

Yunnan Key Laboratory of Breast Cancer Precision Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, 650500, Yunnan, China.

Achieving precise intratumoral accumulation and coordinated activation remains a major challenge in nanomedicine. Photothermal therapy (PTT) provides spatiotemporal control, yet its efficacy is hindered by heterogeneous distribution of PTT agents and limited synergy with other modalities. Here, we develop a dual-activation nanoplatform (IrO-P) that integrates exogenous photothermal stimulation with endogenous tumor microenvironment (TME)-responsive catalysis for synergistic chemodynamic therapy (CDT) and ferroptosis induction.

View Article and Find Full Text PDF

Complete Response to BET Inhibitor in Primary Pulmonary NUT Carcinoma With Single-Cell Sequencing-Based Analysis: A Case Report.

JTO Clin Res Rep

October 2025

Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC), and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Wanzhou District, Chongqing, People's Republic of China.

NUT carcinoma is a rare and highly aggressive malignancy characterized by rapid progression, resistance to conventional therapies, and an extremely poor prognosis. This report presents a 36-year-old patient with stage IIIB primary pulmonary NUT carcinoma who achieved remarkable clinical outcomes with NHWD-870 monotherapy, a novel BET inhibitor. After just 1 month of treatment, imaging revealed a partial response, and a complete response was achieved within 5 months.

View Article and Find Full Text PDF

Background: In contrast-enhanced digital mammography (CEDM) and contrast-enhanced digital breast tomosynthesis (CEDBT), low-energy (LE) and high-energy (HE) images are acquired after injection of iodine contrast agent. Weighted subtraction is then applied to generate dual-energy (DE) images, where normal breast tissues are suppressed, leaving iodinated objects enhanced. Currently, clinical systems employ a dual-shot (DS) method, where LE and HE images are acquired with two separate exposures.

View Article and Find Full Text PDF

Background: In catheter-based radiofrequency ablation (RFA), energy is delivered to heterogeneous thin-walled tissues to induce therapeutic heating. Variations in electrical and mechanical properties of tissue contents have a great effect on outcomes.

Purpose: The objective of this study is to develop models that replicate tissue heterogeneity and visualize ablation zones for effective evaluation and optimization.

View Article and Find Full Text PDF