98%
921
2 minutes
20
Background: Exposure to green space can protect against poor health through a variety of mechanisms. However, there is heterogeneity in methodological approaches to exposure assessments which makes creating effective policy recommendations challenging.
Objective: Critically evaluate the use of a satellite-derived exposure metric, the Enhanced Vegetation Index (EVI), for assessing access to different types of green space in epidemiological studies.
Methods: We used Landsat 5-8 (30 m resolution) to calculate average EVI for a 300 m radius surrounding 1.4 million households in Wales, UK for 2018. We calculated two additional measures using topographic vector data to represent access to green spaces within 300 m of household locations. The two topographic vector-based measures were total green space area stratified by type and average private garden size. We used linear regression models to test whether EVI could discriminate between publicly accessible and private green space and Pearson correlation to test associations between EVI and green space types.
Results: Mean EVI for a 300 m radius surrounding households in Wales was 0.28 (IQR = 0.12). Total green space area and average private garden size were significantly positively associated with corresponding EVI measures (β = < 0.0001, 95% CI: 0.0000, 0.0000; β = 0.0001, 95% CI: 0.0001, 0.0001 respectively). In urban areas, as average garden size increases by 1 m, EVI increases by 0.0002. Therefore, in urban areas, to see a 0.1 unit increase in EVI index score, garden size would need to increase by 500 m. The very small β values represent no 'measurable real-world' associations. When stratified by type, we observed no strong associations between greenspace and EVI.
Impact: It is a widely implemented assumption in epidiological studies that an increase in EVI is equivalent to an increase in greenness and/or green space. We used linear regression models to test associations between EVI and potential sources of green reflectance at a neighbourhood level using satellite imagery from 2018. We compared EVI measures with a 'gold standard' vector-based dataset that defines publicly accessible and private green spaces. We found that EVI should be interpreted with care as a greater EVI score does not necessarily mean greater access to publicly available green spaces in the hyperlocal environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446865 | PMC |
http://dx.doi.org/10.1038/s41370-024-00650-5 | DOI Listing |
J Colloid Interface Sci
August 2025
Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),
Hypothesis: Gas hydrate formation in sediments is influenced by the availability of gas-water interfacial areas, which governs gas-water interactions. The surface wettability of sediment particles is expected to affect the spatial distribution of water within the pore space, thereby altering the extent of gas-liquid contact. Consequently, by tuning the wettability heterogeneity of the sediment, the spatial distribution of pore water can be regulated, which in turn influences the gas-water interactions and the kinetics of gas hydrate formation.
View Article and Find Full Text PDFACS Synth Biol
September 2025
Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China.
The environmental resistance exhibited by microorganisms is concerned with their ability to withstand and adapt to an array of detrimental environmental conditions, with their survival and reproductive success being threatened. Within the realm of biotechnology, which emphasizes stress resistance, a critical role in bacterial adaptive strategies to environmental fluctuations is assumed to be in the periplasmic space. An innovative methodology to augment bacterial tolerance to stress by employing a mucin-mimetic collagen analogue, designated as S1552 (which is secreted into the periplasmic compartment), is introduced by this investigation.
View Article and Find Full Text PDFAcc Chem Res
September 2025
Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.
ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
Structurally unique halichonine B is promising for the design of pharmaceutical leads, while function-oriented optimization is unknown in agrochemical science. Our recent practical synthesis offers a great chance for the discovery of antimicrobial leads. "Linker plus replaceable substituents" is exerted, in which up to 9 unique linkers together with diverse substituents from a wide chemical space are investigated for optimization of the readily available drimanyl amine.
View Article and Find Full Text PDFEnviron Plan B Urban Anal City Sci
March 2025
Department of Landscape Architecture and Urban Planning, Texas A&M University.
Urban green space disparities persist amid rapid urbanization, widening the supply-demand gap between parks and developed area. Population density is a critical determinant in estimating park visitors, defining suitable park locations, and allocating facilities for park accessibility. Conventionally, population density data were used as a foundational basis for urban green space planning decisions, often derived from sources like the US Census Bureau, primarily reflecting "nighttime residential" distribution.
View Article and Find Full Text PDF