Neighborhood evaluator for efficient super-resolution reconstruction of 2D medical images.

Comput Biol Med

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, China. Electronic address:

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Deep learning-based super-resolution (SR) algorithms aim to reconstruct low-resolution (LR) images into high-fidelity high-resolution (HR) images by learning the low- and high-frequency information. Experts' diagnostic requirements are fulfilled in medical application scenarios through the high-quality reconstruction of LR digital medical images.

Purpose: Medical image SR algorithms should satisfy the requirements of arbitrary resolution and high efficiency in applications. However, there is currently no relevant study available. Several SR research on natural images have accomplished the reconstruction of resolutions without limitations. However, these methodologies provide challenges in meeting medical applications due to the large scale of the model, which significantly limits efficiency. Hence, we suggest a highly effective method for reconstructing medical images at any desired resolution.

Methods: Statistical features of medical images exhibit greater continuity in the region of neighboring pixels than natural images. Hence, the process of reconstructing medical images is comparatively less challenging. Utilizing this property, we develop a neighborhood evaluator to represent the continuity of the neighborhood while controlling the network's depth.

Results: The suggested method has superior performance across seven scales of reconstruction, as evidenced by experiments conducted on panoramic radiographs and two external public datasets. Furthermore, the proposed network significantly decreases the parameter count by over 20× and the computational workload by over 10× compared to prior researches. On large-scale reconstruction, the inference speed can be enhanced by over 5×.

Conclusion: The novel proposed SR strategy for medical images performs efficient reconstruction at arbitrary resolution, marking a significant breakthrough in the field. The given scheme facilitates the implementation of SR in mobile medical platforms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108212DOI Listing

Publication Analysis

Top Keywords

medical images
20
medical
10
images
9
neighborhood evaluator
8
arbitrary resolution
8
natural images
8
reconstructing medical
8
reconstruction
6
evaluator efficient
4
efficient super-resolution
4

Similar Publications

Mediastinal masses often present acutely as medical emergencies, necessitating prompt and accurate diagnosis. Imaging-guided fine needle aspiration cytology (FNAC) plays a pivotal role in rapidly identifying rare mediastinal tumours and differentiating them from other potential aetiologies, enabling timely intervention. Primary mediastinal germ cell tumours (PMGCTs) constitute approximately 15% of adult mediastinal neoplasms.

View Article and Find Full Text PDF

Cognitive impairment and dementia, including Alzheimer's disease (AD), pose a global health crisis, necessitating non-invasive biomarkers for early detection. This review highlights the retina, an accessible extension of the central nervous system (CNS), as a window to cerebral pathology through structural, functional, and molecular alterations. By synthesizing interdisciplinary evidence, we identify retinal biomarkers as promising tools for early diagnosis and risk stratification.

View Article and Find Full Text PDF

Introduction: We developed and validated age-related amyloid beta (Aβ) positron emission tomography (PET) trajectories using a statistical model in cognitively unimpaired (CU) individuals.

Methods: We analyzed 849 CU Korean and 521 CU non-Hispanic White (NHW) participants after propensity score matching. Aβ PET trajectories were modeled using the generalized additive model for location, scale, and shape (GAMLSS) based on baseline data and validated with longitudinal data.

View Article and Find Full Text PDF

Introduction: Differentiating acute tubular necrosis (ATN) from rejection in pediatric kidney transplant (KT) recipients remains challenging and necessitates invasive biopsy. Doppler ultrasound-derived resistive index (RI) is a noninvasive modality to assess graft status, but its diagnostic utility in children is unclear. This study evaluates RI's ability to distinguish ATN and rejection in KT.

View Article and Find Full Text PDF

Unlabelled: Leptomeningeal metastasis (LM) is a severe complication of solid malignancies, including lung adenocarcinoma, characterized by poor prognosis and diagnostic challenges. This study assesses whether curvilinear peri-brainstem hyperintense signals on MRI are a characteristic feature of LM in lung adenocarcinoma patients.

Methods: This retrospective study analyzed data from multiple centers, encompassing lung adenocarcinoma patients with peri-brainstem curvilinear hyperintense signals on MRI between January 2016 and March 2022.

View Article and Find Full Text PDF