98%
921
2 minutes
20
Co-functional proteins tend to have rates of evolution that covary over time. This correlation between evolutionary rates can be measured over the branches of a phylogenetic tree through methods such as evolutionary rate covariation (ERC), and then used to construct gene networks by the identification of proteins with functional interactions. The cause of this correlation has been hypothesized to result from both compensatory coevolution at physical interfaces and nonphysical forces such as shared changes in selective pressure. This study explores whether coevolution due to compensatory mutations has a measurable effect on the ERC signal. We examined the difference in ERC signal between physically interacting protein domains within complexes compared to domains of the same proteins that do not physically interact. We found no generalizable relationship between physical interaction and high ERC, although a few complexes ranked physical interactions higher than nonphysical interactions. Therefore, we conclude that coevolution due to physical interaction is weak, but present in the signal captured by ERC, and we hypothesize that the stronger signal instead comes from selective pressures on the protein as a whole and maintenance of the general function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942632 | PMC |
http://dx.doi.org/10.7554/eLife.93333 | DOI Listing |
Microb Genom
September 2025
Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, PR China.
African swine fever virus (ASFV) is highly transmissible and can cause up to 100% mortality in pigs. The virus has spread across most regions of Asia and Europe, resulting in the deaths of millions of pigs. A deep understanding of the genetic diversity and evolutionary dynamics of ASFV is necessary to effectively manage outbreaks.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
Ubiquity of cancer across the tree of life yields opportunities to understand variation in cancer defences across species. Peto's paradox, the finding that large-bodied species do not suffer from more cancer despite having more cells at risk of oncogenic mutations compared to small species, can be explained if large size selects for better cancer defences. Since birds live longer than non-flying mammals of equivalent size, and are descendants of moderate-sized dinosaurs, we ask whether ancestral cancer defences are retained if body size shrinks in a lineage.
View Article and Find Full Text PDFMol Ecol Resour
September 2025
College of Life Sciences, Henan Normal University, Xinxiang, China.
Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II transposable elements prevalent in eukaryotic genomes, contributing to various genomic and genic functions in plants. However, research on MITEs mainly targets a few species, limiting a comprehensive understanding and systematic comparison of MITEs in plants. Here, we developed a highly sensitive MITE annotation pipeline with a low false positive rate and applied it to 207 high-quality plant genomes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520.
A frequent goal of phage biology is to quantify how well a phage kills a population of host bacteria. Unfortunately, traditional methods to quantify phage success can be time-consuming, limiting the throughput of experiments. Here, we use theory to show how the effects of phages on their hosts can be quantified using bacterial population dynamics measured in a high-throughput microplate reader (automated spectrophotometer).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany.
Animals can improve their decision-making abilities by integrating information from multiple senses, which is especially beneficial when living in fluctuating environments. However, understanding how wild predators may use multimodal sensing when hunting prey in split-second interactions remains largely unexplored. As nocturnal hunters, bats rely on echolocation to navigate and to locate evasive prey, yet they have retained functional vision, despite the associated costs.
View Article and Find Full Text PDF