Emerging materials and transistors for integrated circuits.

Natl Sci Rev

Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, China.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894031PMC
http://dx.doi.org/10.1093/nsr/nwae040DOI Listing

Publication Analysis

Top Keywords

emerging materials
4
materials transistors
4
transistors integrated
4
integrated circuits
4
emerging
1
transistors
1
integrated
1
circuits
1

Similar Publications

Carbon aerogels and xerogels, with their 3D porous architectures, ultralow density, high surface area, and excellent conductivity, have emerged as multifunctional materials for energy and environmental applications. This review highlights recent advances in the synthesis of these materials polymerisation, drying, and carbonisation, as well as the role of novel precursors such as graphene, carbon nanotubes, and biomass. Emphasis is also placed on doped and metal-decorated carbon gels as efficient electrocatalysts for oxygen reduction reactions, enabling four- and two-electron pathways for energy conversion and the production of green HO, respectively.

View Article and Find Full Text PDF

Tuning the Electronic Structure in the MoS/SrTiO Heterojunction via Phase Evolution of the SrTiO Substrate.

ACS Nano

September 2025

Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.

The coupling between transition metal dichalcogenides (TMDCs) and SrTiO has recently emerged as a fertile platform for discovering interfacial phenomena, where particle interactions, lattice coupling, and dielectric screening give rise to interesting physical effects. These hybrid systems hold significant promise for two-dimensional (2D) electronics, ferroelectric state control, and metastable phase engineering. However, effective modulation of the interfacial electronic structure remains a critical challenge.

View Article and Find Full Text PDF

Molecular Plasmonic Cavities.

Nano Lett

September 2025

Department of Physics, Columbia University, New York, New York 10027, United States.

Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.

View Article and Find Full Text PDF

The discovery of solute precursors of crystalline materials, such as biominerals, recently challenged the classical nucleation theory (CNT). One emerging method for investigating these early-stage intermediates in solution is dissolution dynamic nuclear polarization (dDNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy. Recent applications of dDNP to calcium carbonate (CaC) and calcium phosphate (CaP) mineralization have demonstrated the feasibility of identifying and tracing very early-stage prenucleation clusters (PNCs).

View Article and Find Full Text PDF

Globular proteins as functional-mechanical materials: a multiscale perspective on design, processing, and applications.

Mater Horiz

September 2025

MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.

Globular proteins, traditionally regarded as non-structural biomolecules due to the limited load-bearing capacity in their monomeric states, are increasingly recognized as valuable building blocks for functional-mechanical materials. Their inherent bioactivity, chemical versatility, and structural tunability enable the design of materials that combine biological functionality with tailored mechanical performance. This review highlights recent advances in engineering globular proteins-spanning natural systems (serum albumins, enzymes, milk globulins, silk sericin, and soy protein isolates) to recombinant architectures including tandem-repeat proteins-into functional-mechanical platforms.

View Article and Find Full Text PDF