98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894031 | PMC |
http://dx.doi.org/10.1093/nsr/nwae040 | DOI Listing |
Chem Commun (Camb)
September 2025
University of Belgrade-Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Rebublic of Serbia.
Carbon aerogels and xerogels, with their 3D porous architectures, ultralow density, high surface area, and excellent conductivity, have emerged as multifunctional materials for energy and environmental applications. This review highlights recent advances in the synthesis of these materials polymerisation, drying, and carbonisation, as well as the role of novel precursors such as graphene, carbon nanotubes, and biomass. Emphasis is also placed on doped and metal-decorated carbon gels as efficient electrocatalysts for oxygen reduction reactions, enabling four- and two-electron pathways for energy conversion and the production of green HO, respectively.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
The coupling between transition metal dichalcogenides (TMDCs) and SrTiO has recently emerged as a fertile platform for discovering interfacial phenomena, where particle interactions, lattice coupling, and dielectric screening give rise to interesting physical effects. These hybrid systems hold significant promise for two-dimensional (2D) electronics, ferroelectric state control, and metastable phase engineering. However, effective modulation of the interfacial electronic structure remains a critical challenge.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Physics, Columbia University, New York, New York 10027, United States.
Graphene-based photonic structures have emerged as fertile ground for the controlled manipulation of surface plasmon polaritons (SPPs), providing a two-dimensional platform with low optoelectronic losses. In principle, nanostructuring graphene can enable further confinement of nanolight─enhancing light-matter interactions in the form of SPP cavity modes. In this study, we engineer nanoscale plasmonic cavities composed of self-assembled C arrays on graphene.
View Article and Find Full Text PDFAnal Chem
September 2025
Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria.
The discovery of solute precursors of crystalline materials, such as biominerals, recently challenged the classical nucleation theory (CNT). One emerging method for investigating these early-stage intermediates in solution is dissolution dynamic nuclear polarization (dDNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy. Recent applications of dDNP to calcium carbonate (CaC) and calcium phosphate (CaP) mineralization have demonstrated the feasibility of identifying and tracing very early-stage prenucleation clusters (PNCs).
View Article and Find Full Text PDFMater Horiz
September 2025
MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.
Globular proteins, traditionally regarded as non-structural biomolecules due to the limited load-bearing capacity in their monomeric states, are increasingly recognized as valuable building blocks for functional-mechanical materials. Their inherent bioactivity, chemical versatility, and structural tunability enable the design of materials that combine biological functionality with tailored mechanical performance. This review highlights recent advances in engineering globular proteins-spanning natural systems (serum albumins, enzymes, milk globulins, silk sericin, and soy protein isolates) to recombinant architectures including tandem-repeat proteins-into functional-mechanical platforms.
View Article and Find Full Text PDF