Trends in low temperature and non-thermal technologies for the degradation of persistent organic pollutants.

J Hazard Mater

Institute for Sustainable Engineering, 1536 W. 15th Street, Lawrence, Kansas 66045, United States; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas, 66045, United States. Electronic address:

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The daunting effects of persistent organic pollutants on humans, animals, and the environment cannot be overemphasized. Their fate, persistence, long-range transport, and bioavailability have made them an environmental stressor of concern which has attracted the interest of the research community. Concerted efforts have been made by relevant organizations utilizing legislative laws to ban their production and get rid of them completely for the sake of public health. However, they have remained refractive in different compartments of the environment. Their bioavailability is majorly a function of different anthropogenic activities. Landfilling and incineration are among the earliest classical means of environmental remediation of waste; however, they are not sustainable due to the seepage of contaminants in landfills, the release of toxic gases into the atmosphere and energy requirements during incineration. Other advanced waste destruction technologies have been explored for the degradation of these recalcitrant pollutants; although, some are efficient, but are limited by high amounts of energy consumption, the use of organic solvents and hazardous chemicals, high capital and operational cost, and lack of public trust. Thus, this study has systematically reviewed different contaminant degradation technologies, their efficiency, and feasibility. Finally, based on techno-economic feasibility, non-invasiveness, efficiency, and environmental friendliness; radiation technology can be considered a viable alternative for the environmental remediation of contaminants in all environmental matrices at bench-, pilot-, and industrial-scale.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.133830DOI Listing

Publication Analysis

Top Keywords

persistent organic
8
organic pollutants
8
environmental remediation
8
environmental
5
trends low
4
low temperature
4
temperature non-thermal
4
non-thermal technologies
4
technologies degradation
4
degradation persistent
4

Similar Publications

An alternative approach to diagnosis and treatment of intractable paroxysmal sneezing in a child.

Turk J Pediatr

September 2025

Department of Child and Adolescent Psychiatry, Ankara Bilkent City Hospital, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye.

Background: Intractable paroxysmal sneezing is a rare and diagnostically challenging condition in children, often mimicking organic diseases. While it is often addressed as psychogenic in the literature, our case presented findings suggestive of a tic disorder, highlighting the need for a broader diagnostic perspective.

Case Presentation: An 11-year-old girl was referred to the child and adolescent psychiatry clinic with a one-year history of persistent and fluctuating sneezing episodes.

View Article and Find Full Text PDF

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

Activation of peroxymonosulfate by Fenton-conditioned sludge-derived biochar for efficient degradation and detoxification of sulfamethoxazole: Reactive oxygen species dominated process.

Environ Res

September 2025

School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China. Electronic address: ho

The activation of peroxymonosulfate (PMS) by biochar has shown promising potential for the efficient degradation and detoxification of antibiotics in wastewater. However, the underlying mechanisms are not fully understood. In this study, Fenton-conditioned sludge-derived biochar (FSBC) was prepared by microwave pyrolysis to activate PMS for the efficient degradation and detoxification of sulfamethoxazole (SMX).

View Article and Find Full Text PDF

Organic battery electrode materials represent a sustainable alternative compared to most inorganic electrodes, yet challenges persist regarding their energy density and cycling stability. In this work, a new organic electrode material is described, which is obtained via ionothermal polymerization of low-cost starting materials, melem (2,5,8-triamino-tri-s-triazine) and perylenetetracarboxylic dianhydride (PTCDA). The resulting networked polymer Melem-PDI exhibits favorable thermal and electrochemical properties, prompting investigation into its performance as a positive electrode material in rechargeable lithium and magnesium batteries.

View Article and Find Full Text PDF

The Trilogy of Skin Regeneration via Metal-Organic Frameworks Nanomedicine: Precision Management of Refractory Wounds, Pathological Scarring, and Hair Follicle Reactivation.

Int J Nanomedicine

September 2025

Department of Plastic Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.

Diabetic infected wounds represent a formidable clinical challenge characterized by persistent hyperglycemia-induced pathological cascades that disrupt normal healing processes through multiple mechanisms including chronic inflammation, oxidative stress, and microvascular dysfunction. As prototypical chronic wounds, they exhibit severely impaired tissue regeneration due to this multifaceted dysfunction in both skin architecture and biological function. Metal-organic frameworks (MOFs) have emerged as promising next-generation therapeutic platforms owing to their exceptional structural tunability, multifunctional properties, and precise spatiotemporal drug delivery capabilities.

View Article and Find Full Text PDF