Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: To date, economic analyses of tissue-based next generation sequencing genomic profiling (NGS) for advanced solid tumors have typically required models with assumptions, with little real-world evidence on overall survival (OS), clinical trial enrollment or end-of-life quality of care.

Methods: Cost consequence analysis of NGS testing (555 or 161-gene panels) for advanced solid tumors through the OCTANE clinical trial (NCT02906943). This is a longitudinal, propensity score-matched retrospective cohort study in Ontario, Canada using linked administrative data. Patients enrolled in OCTANE at Princess Margaret Cancer Centre from August 2016 until March 2019 were matched with contemporary patients without large gene panel testing from across Ontario not enrolled in OCTANE. Patients were matched according to 19 patient, disease and treatment variables. Full 2-year follow-up data was available. Sensitivity analyses considered alternative matched cohorts. Main Outcomes were mean per capita costs (2019 Canadian dollars) from a public payer's perspective, OS, clinical trial enrollment and end-of-life quality metrics.

Findings: There were 782 OCTANE patients with 782 matched controls. Variables were balanced after matching (standardized difference <0.10). There were higher mean health-care costs with OCTANE ($79,702 vs. $59,550), mainly due to outpatient and specialist visits. Publicly funded drug costs were less with OCTANE ($20,015 vs. $24,465). OCTANE enrollment was not associated with improved OS (restricted mean survival time [standard error]: 1.50 (±0.03) vs. 1.44 (±0.03) years, log-rank p = 0.153), varying by tumor type. In five tumor types with ≥35 OCTANE patients, OS was similar in three (breast, colon, uterus, all p > 0.40), and greater in two (ovary, biliary, both p < 0.05). OCTANE was associated with greater clinical trial enrollment (25.4% vs. 9.5%, p < 0.001) and better end-of-life quality due to less death in hospital (10.2% vs. 16.4%, p = 0.003). Results were robust in sensitivity analysis.

Interpretation: We found an increase in healthcare costs associated with multi-gene panel testing for advanced cancer treatment. The impact on OS was not significant, but varied across tumor types. OCTANE was associated with greater trial enrollment, lower publicly funded drug costs and fewer in-hospital deaths suggesting important considerations in determining the value of NGS panel testing for advanced cancers.

Funding: T.P H holds a research grant provided by the Ontario Institute for Cancer Research through funding provided by the Government of Ontario (#IA-035 and P.HSR.158) and through funding of the Canadian Network for Learning Healthcare Systems and Cost-Effective 'Omics Innovation (CLEO) via Genome Canada (G05CHS).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876574PMC
http://dx.doi.org/10.1016/j.eclinm.2024.102443DOI Listing

Publication Analysis

Top Keywords

advanced solid
12
clinical trial
12
panel testing
8
linked administrative
8
administrative data
8
solid tumors
8
trial enrollment
8
enrollment end-of-life
8
end-of-life quality
8
enrolled octane
8

Similar Publications

Tuning the Electrical Property and Electronic Band Structures of Organic Semiconductors via Surface Tension.

J Phys Chem Lett

September 2025

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.

Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.

View Article and Find Full Text PDF

Causes of Death After Surgery Among Cancer Patients: A Population-based Cohort Study.

Int J Surg

September 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Introduction: Recent advancements in surgical techniques and perioperative care have improved cancer survival rates, yet postoperative comorbidity and mortality remain a critical concern. Despite progress in cancer control, systematic analyses of long-term mortality trends and competing risks in surgery-intervened cancer populations are lacking. This study aimed to quantify temporal patterns of postoperative mortality causes across 21 solid cancers and identify dominant non-cancer risk factors to inform survivorship care strategies.

View Article and Find Full Text PDF

This article presents an advanced iteration of the polyoxometalate (POM)-Ionosolv concept to generate biobased methyl formate in high yield and a bleached cellulose pulp from lignocellulosic biomass in a single-step operation by using redox-balanced POM catalysts and molecular oxygen in alcoholic ionic liquid (IL) mixtures. The performance of the three Ionosolv-ILs triethylammonium hydrogen sulfate ([TEA][HSO]), N,N-dimethylbutylammonium hydrogen sulfate ([DMBA][HSO4]), and tributylmethylphosphonium methyl sulfate ([TBMP][MeSO]), mixed with methanol (MeOH) (30/70 wt%), is evaluated by methyl formate yield from extracted hemicellulose and lignin as well as purity of the bleached cellulose pulp in the presence of various Keggin-type POMs. The redox-balanced HPVMnMoO POM catalyst in [TBMP][MeSO]/MeOH emerge as the most effective combination, achieving 20% methyl formate yield from commercial beech wood.

View Article and Find Full Text PDF

Core-shell electrodes provide a potential and innovative approach for significantly enhancing the performance and capacity of supercapacitors (SCs) by combining two distinct materials. The capabilities of these advanced electrodes surpass those of conventional single electrodes. Specifically, these exhibit better energy storage, higher power density, and improved overall performance.

View Article and Find Full Text PDF

Confinement-Tailored High-Concentration Electrolytes in Metal-Organic Frameworks for Durable Lithium-Metal Batteries.

Small

September 2025

School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.

High-concentration electrolytes (HCEs) face inherent challenges such as high viscosity and diminished ionic conductivity caused by the formation of three-dimensional (3D) anion networks, which limit their practical applications. In this study, it is demonstrated that encapsulating HCEs within metal-organic frameworks (MOFs) effectively disrupts these 3-D networks, resulting in significantly enhanced ionic conductivity. Raman spectroscopy, nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations reveal a significant reduction in aggregates (AGGs)-state anion within MOF-confined electrolytes, confirming the reconstruction of the solvation environment.

View Article and Find Full Text PDF