Identifying long non-coding RNAs involved in heat stress response during wheat pollen development.

Front Plant Sci

Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Melbourne, VIC, Australia.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Wheat is a staple food crop for over one-third of the global population. However, the stability of wheat productivity is threatened by heat waves associated with climate change. Heat stress at the reproductive stage can result in pollen sterility and failure of grain development.

Methods: This study used transcriptome data analysis to explore the specific expression of long non-coding RNAs (lncRNAs) in response to heat stress during pollen development in four wheat cultivars.

Results And Discussion: We identified 11,054 lncRNA-producing loci, of which 5,482 lncRNAs showed differential expression in response to heat stress. Heat-responsive lncRNAs could target protein-coding genes in and and in lncRNA-miRNA-mRNA regulatory networks. Gene ontology analysis predicted that target protein-coding genes of lncRNAs regulate various biological processes such as hormonal responses, protein modification and folding, response to stress, and biosynthetic and metabolic processes. We also noted some paired lncRNA/protein-coding gene modules and some lncRNA-miRNA-mRNA regulatory modules shared in two or more wheat cultivars. These modules were related to regulating plant responses to heat stress, such as heat-shock proteins and transcription factors, and protein domains, such as MADS-box, Myc-type, and Alpha crystallin/Hsp20 domain.

Conclusion: Our results provide the basic knowledge and molecular resources for future functional studies investigating wheat reproductive development under heat stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10876783PMC
http://dx.doi.org/10.3389/fpls.2024.1344928DOI Listing

Publication Analysis

Top Keywords

heat stress
24
long non-coding
8
non-coding rnas
8
pollen development
8
response heat
8
target protein-coding
8
protein-coding genes
8
lncrna-mirna-mrna regulatory
8
heat
7
stress
7

Similar Publications

Heat stroke-induced central nervous system injury: Mechanisms and therapeutic perspectives.

J Therm Biol

September 2025

Department of Critical Care Medicine, the First Medical Cener, Chinese PLA General Hospital, Beijing, 100853, China. Electronic address:

Heat stroke (HS), a life-threatening heat-related disorder, is characterized by a rapid elevation of core body temperature exceeding 40 °C, accompanied by central nervous system (CNS) dysfunction and multiple organ dysfunction syndrome (MODS). With the escalating impact of global warming, the incidence of HS has risen progressively, posing a significant threat to global health. The CNS is one of the primary target organs in HS, and its injury mechanisms involve intricate interactions among inflammatory cascades, oxidative stress, programmed cell death, and blood-brain barrier (BBB) disruption.

View Article and Find Full Text PDF

Stress-induced organismal death is genetically regulated by the mTOR-Zeste-Phae1 axis.

Proc Natl Acad Sci U S A

September 2025

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.

All organisms are exposed to various stressors, which can sometimes lead to organismal death, depending on their intensity. While stress-induced organismal death has been observed in many species, the underlying mechanisms remain unclear. In this study, we investigated the molecular mechanisms of stress-induced organismal death in the fruit fly .

View Article and Find Full Text PDF

Global warming causes heat stress in livestock, impairing their health, welfare, and productivity. In bovines, chronic stress elevates cortisol levels; however, this response often goes undetected due to the lack of practical biomatrices for accurate assessment. Common biomatrices such as blood require repeated sampling that may affect measurement accuracy.

View Article and Find Full Text PDF

The processes of thermoforming 2D-printed electronics into 3D structures can introduce defects that impact the electrical performance of conductors, making them more susceptible to thermal failure during high electrical power/current applications on temperature-sensitive substrates. We therefore report the use of a thin-film boron nitride nanotube (BNNT) interlayer to directly reduce heat stress on linear and serpentine metallic traces on polycarbonate substrates thermoformed to 3D spherocylindrical geometries at varying elongation percentages. We demonstrate that the BNNT interlayer helps to improve the electrical conductivity of highly elongated thermoformed 3D traces in comparison to traces on bare polycarbonate.

View Article and Find Full Text PDF

Background: Climate distress is a psychological reaction to adverse weather events and climate change. These events can increase people's vulnerability to develop psychiatric disorders like anxiety, depression, and PTSD particularly in disaster-prone regions like India.

Aim: To explore the relationship between climate distress and psychological impact with a particular emphasis on women, elderly, and other at risk populations who owing to their health vulnerabilities, lack of resources or social roles that make them dependent on others, experience stress in the face of climate change.

View Article and Find Full Text PDF