Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carnitine derivatives of disease-specific acyl-CoAs are the diagnostic hallmark for long-chain fatty acid β-oxidation disorders (lcFAOD), including carnitine shuttle deficiencies, very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MPTD). The exact consequence of accumulating lcFAO-intermediates and their influence on cellular lipid homeostasis is, however, still unknown. To investigate the fate and cellular effects of the accumulating lcFAO-intermediates and to explore the presence of disease-specific markers, we used tracer-based lipidomics with deuterium-labeled oleic acid (D9-C18:1) in lcFAOD patient-derived fibroblasts. In line with previous studies, we observed a trend towards neutral lipid accumulation in lcFAOD. In addition, we detected a direct connection between the chain length and patterns of (un)saturation of accumulating acylcarnitines and the various enzyme deficiencies. Our results also identified two disease-specific candidate biomarkers. Lysophosphatidylcholine(14:1) (LPC(14:1)) was specifically increased in severe VLCADD compared to mild VLCADD and control samples. This was confirmed in plasma samples showing an inverse correlation with enzyme activity, which was better than the classic diagnostic marker C14:1-carnitine. The second candidate biomarker was an unknown lipid class, which we identified as S-(3-hydroxyacyl)cysteamines. We hypothesized that these were degradation products of the CoA moiety of accumulating 3-hydroxyacyl-CoAs. S-(3-hydroxyacyl)cysteamines were significantly increased in LCHADD compared to controls and other lcFAOD, including MTPD. Our findings suggest extensive alternative lipid metabolism in lcFAOD and confirm that lcFAOD accumulate neutral lipid species. In addition, we present two disease-specific candidate biomarkers for VLCADD and LCHADD, that may have significant relevance for disease diagnosis, prognosis, and monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202302163RDOI Listing

Publication Analysis

Top Keywords

disease-specific candidate
12
candidate biomarkers
12
tracer-based lipidomics
8
β-oxidation disorders
8
lcfaod including
8
dehydrogenase deficiency
8
accumulating lcfao-intermediates
8
neutral lipid
8
lcfaod
6
disease-specific
5

Similar Publications

Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.

Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).

Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.

View Article and Find Full Text PDF

Background: The clinical differentiation between obstetric antiphospholipid syndrome (OAPS) and undifferentiated connective tissue disease (UCTD) presents significant diagnostic challenges. This study employs metabolomics to investigate metabolic reprogramming patterns in OAPS and UCTD, aiming to identify potential biomarkers for early diagnosis.

Methods: Using LC-MS-based metabolomics, we analyzed serum profiles from 40 OAPS patients (B1), 30 OAPS + UCTD patients (B2), 27 UCTD patients (B3), and 30 healthy controls (A1).

View Article and Find Full Text PDF

The Caribbean spiny lobster Panulirus argus is a social species in which individuals aggregate for protection during the day using chemicals in their urine as guiding cues. This behavior changes when animals are infected by Panulirus argus virus 1 (PaV1), such that healthy animals avoid the urine of diseased conspecifics. The aim of this study was to identify the molecules responsible for this switch in aggregation behavior.

View Article and Find Full Text PDF

Immune-coagulation dynamics in severe COVID-19 revealed by autoantibody profiling and multi-omics integration.

Sci Rep

September 2025

The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52, Stockholm, Sweden.

Severe COVID-19 is characterized by immune-coagulation dysregulation, yet the contribution of related autoantibodies remains poorly understood. We investigated relationships between plasma autoantibody reactivities, whole-blood transcriptomics, plasma proteomics, and clinical laboratory parameters in a cohort of hospitalized COVID-19 patients. Transcriptomic analysis revealed that 42 curated coagulation and complement cascade genes were upregulated in severe cases compared to healthy controls, with 15 genes, including CR1L, ELANE, ITGA2B, ITGB3, VWF, TFPI, PROS1, MMRN1, and SELP (> 1.

View Article and Find Full Text PDF

We aimed to study the diagnostic yield and clinical impact of trio exome sequencing (tES) in children with autism spectrum disorder (ASD). Participants (n = 137) between 2 and 18 years with syndromic and non-syndromic ASD underwent tES, after excluding karyotype-detectable cytogenetic abnormalities and fragile X syndrome. The diagnostic yield was 22/137 (16.

View Article and Find Full Text PDF