Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The LiMX compounds (M=Sc, Y, In; X=Cl, Br) are known as promising ionic conductors due to their compatibility with typical metal oxide cathode materials. In this study, we have successfully synthesized γ-LiScCl using high pressure for the first time in this family. Structural analysis revealed that the high-pressure polymorph crystallizes in the polar and chiral space group P6mc with hexagonal close-packing (hcp) of anions, unlike the ambient-pressure α-LiScCl and its spinel analog with cubic closed packing (ccp) of anions. Investigation of the known LiMX family further revealed that the cation/anion radius ratio, r/r, is the factor that determines which anion sublattice is formed and that in γ-LiScCl, the difference in compressibility between Sc and Cl exceeds the ccp r/r threshold under pressure, enabling the ccp-to-hcp conversion. Electrochemical tests of γ-LiScCl demonstrate improved electrochemical reduction stability. These findings open up new avenues and design principles for lithium solid electrolytes, enabling routes for materials exploration and tuning electrochemical stability without compositional changes or the use of coatings.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202401779DOI Listing

Publication Analysis

Top Keywords

solid electrolytes
8
anionic sublattices
4
sublattices halide
4
halide solid
4
electrolytes case
4
case study
4
study high-pressure
4
high-pressure phase
4
phase lisccl
4
lisccl limx
4

Similar Publications

Ultrafast Al⁺ Conduction through Cooperative Bonding in Disordered Polycarbonate-Polyether Electrolytes.

Small Methods

September 2025

Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.

As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) exhibit outstanding structural tunability, clearly defined ion pathways, and remarkable thermal/chemical stabilities, rendering them highly promising candidates for applications in solid-state electrolytes. However, it remains a challenge to develop a versatile method to incorporate both ionic groups and electron-withdrawing units into a single framework for effectively improving the lithium-ion conductivity. Herein, a series of novel [3+3] defective COFs is successfully synthesized featuring active amine/aldehyde anchoring sites for subsequent post-modification, and regulates the ion conductivity through elaborately tuning the anionic/cationic groups and weak/strong electron-withdrawing units.

View Article and Find Full Text PDF

High Performance Sulfide Solid-State Battery Electrolytes Regulation Mechanism: A Review.

Angew Chem Int Ed Engl

September 2025

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.

Sulfide solid electrolytes (SEs) exhibit excellent ionic conductivity and good mechanical properties, but their poor air stability and solid-solid contact performance seriously hinder the wide application of sulfide all-solid-state batteries (ASSBs). Herein, this paper reviews the history and the major breakthroughs in the development of sulfide SEs. The theories of hard-soft-acid-base theory and glass structure theory, as well as several strategies to improve the chemical stability of sulfide SEs, are discussed emphatically.

View Article and Find Full Text PDF

Subcritical water hydrolysis followed by pre-purification of cashew apple bagasse hydrolysates to produce fermentable sugar.

Food Res Int

November 2025

Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862, Campinas, São Paulo, Brazil. Electronic address:

The hydrolysis of biomass in fermentative processes often faces the difficulty of generating inhibitory products. Its reduction or removal is essential to enable the use of agro-industrial waste, such as cashew apple bagasse. Therefore, this study aimed to find an optimized condition for the hydrolysis of cashew apple bagasse by subcritical water and to introduce an in-line pre-purification process.

View Article and Find Full Text PDF

Evaluation of crosslinked cellulose-based solid and gel polymer electrolytes in lithium-ion batteries.

Int J Biol Macromol

September 2025

Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran. Electronic address:

In order to develop an alternate material for energy storage devices like batteries, this research is being done to create polymer electrolytes based on cellulose as natural polymer. Natural polymers as battery components have a number of advantages, including availability, biodegradability, unleakage, stable form, superior process, electrochemical stability, and low cost. In this study, polymer electrolytes based on cellulose have been synthesized by solution casting to prepare a thin polymer films.

View Article and Find Full Text PDF