98%
921
2 minutes
20
Proteoglycans contain glycosaminoglycans (GAGs) which are negatively charged linear polymers made of repeating disaccharide units of uronic acid and hexosamine units. They play vital roles in numerous physiological and pathological processes, particularly in governing cellular communication and attachment. Depending on their sulfonation state, acetylation, and glycosidic linkages, GAGs belong to different families. The high molecular weight, heterogeneity, and flexibility of GAGs hamper their characterization at atomic resolution, but this may be circumvented via coarse-grained (CG) approaches. In this work, we report a CG model for a library of common GAG types in their isolated or proteoglycan-linked states compatible with version 2.2 (v2.2) of the widely popular CG Martini force field. The model reproduces conformational and thermodynamic properties for a wide variety of GAGs, as well as matching structural and binding data for selected proteoglycan test systems. The parameters developed here may thus be employed to study a range of GAG-containing biomolecular systems, thereby benefiting from the efficiency and broad applicability of the Martini framework.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.3c01088 | DOI Listing |
J Colloid Interface Sci
September 2025
Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina. Electronic address:
Silica-binding peptides (SBPs) are versatile tools for functionalizing silica surfaces in biotechnology, yet the mechanisms underlying their adsorption remain poorly understood. Here, we develop a predictive molecular theory that integrates peptide structure, electrostatic and short-range interactions, and charge regulation effects to model SBP adsorption onto silica. This coarse-grained approach effectively captures the dependence of adsorption on pH, salt concentration, and peptide concentration.
View Article and Find Full Text PDFLangmuir
September 2025
Polymer Research Institute, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
Switchable surfactants exhibit broad application potential due to their reversible response to external stimuli. The reversible mechanism of the CO-switchable surfactant ('-dodecyl-, -dimethyl-acetamidines, DDA) solubilization polycyclic aromatic hydrocarbons (PAHs) and the microscopic dynamic behavior of emulsification/demulsification were systematically studied using coarse-grained molecular dynamics simulations. The dynamic transition processes of protonation (DDA to DDA) and deprotonation (DDA to DDA) were successfully simulated.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
August 2025
Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh. Electronic address:
Polymers with multifunctional capabilities are increasingly important for emerging technologies, particularly in applications requiring electro-responsive behavior. Polyelectrolytes, which are charged polymers, are promising candidates for electrically triggered actuators, artificial muscles, biomedicine, and flexible electronics, where modulation of mechanical properties is crucial for maintaining structural integrity and performance. This study employs molecular dynamics simulations to explore how electric fields influence the mechanical behavior of polyelectrolytes.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2025
Sleep monitoring is essential for assessing sleep quality and understanding its broader implications for overall health. Although electroencephalography (EEG) remains the gold standard for sleep analysis, multichannel techniques are often cumbersome and impractical for real-world application. As a more feasible alternative, single-channel EEG offers greater practicality but still faces several persistent challenges, including reduced spatial resolution, feature instability, and limited clinical interpretability.
View Article and Find Full Text PDFSoft Matter
September 2025
Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
Lipid membranes and membrane deformations are a long-standing area of research in soft matter and biophysics. Computer simulations have complemented analytical and experimental approaches as one of the pillars in the field. However, setting up and using membrane simulations can come with barriers due to the multidisciplinary effort involved and the vast choice of existing simulations models.
View Article and Find Full Text PDF