Publications by authors named "Chandra S Verma"

Cyclic peptides are promising drug candidates due to their ability to modulate intracellular protein-protein interactions, a property often inaccessible to small molecules. However, their typically poor membrane permeability limits therapeutic applicability. Accurate computational prediction of permeability can accelerate the identification of cell-permeable candidates, reducing reliance on time-consuming and costly experimental screening.

View Article and Find Full Text PDF

Background: Mutations in c-MET receptor tyrosine kinase (MET) can be primary oncogenic drivers of multiple tumour types or can be acquired as mechanisms of resistance to therapy. MET tyrosine kinase inhibitors (TKIs) are classified as type I or type II inhibitors, with the former binding to the DFG-in, active conformation of MET, and the latter to the DFG-out, inactive conformation of MET. Understanding how the different classes of MET TKIs impact tumours with varied MET alterations is critical to optimising treatment for patients with MET altered cancers.

View Article and Find Full Text PDF

The slime of velvet worms (Onychophora) is a protein-based bioadhesive that undergoes rapid, yet reversible transition from a fluid into stiff fibers used for prey capture and defense, but the mechanism by which this phase transition functions is largely unknown. Here, integrating transcriptomic and proteomic approaches with AI-guided structure predictions, we discover a group of evolutionarily conserved leucine-rich repeat (LRR) proteins in velvet worm slime that readily adopt a receptor-like, protein-binding "horseshoe" structure. Our structural predictions suggest dimerization of LRR proteins and support their interactions with conserved β-sheet-rich domains of high-molecular-weight proteins, the primary building blocks of velvet worm slime fibers.

View Article and Find Full Text PDF

Introduction: Norovirus, a leading cause of acute gastroenteritis worldwide, is notably stable in the environment due to its non-enveloped nature. In the absence of effective vaccines or treatments, disinfection remains the primary prevention strategy, highlighting the importance of virucidal efficacy in household care products. Conventional effective disinfectants are predominantly alcohol-based, but alcohol is known to pose health risks, such as skin irritation.

View Article and Find Full Text PDF

Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.

View Article and Find Full Text PDF
Article Synopsis
  • * Using prostate organoid technology, this study demonstrates that RA signaling is essential for the development of adult mouse prostate progenitors, influencing their glandular identity and function.
  • * Mutations in FOXA1, often found in prostate and breast cancers, lead to loss of function that affects the transcriptional activity of prostate progenitors, highlighting RA as a critical factor for maintaining glandular identity in these cells.
View Article and Find Full Text PDF

Phase-separating peptides (PSPs) self-assembling into coacervate microdroplets (CMs) are a promising class of intracellular delivery vehicles that can release macromolecular modalities deployed in a wide range of therapeutic treatments. However, the molecular grammar governing intracellular uptake and release kinetics of CMs remains elusive. Here, we systematically manipulate the sequence of PSPs to unravel the relationships between their molecular structure, the physical properties of the resulting CMs, and their delivery efficacy.

View Article and Find Full Text PDF
Article Synopsis
  • Arrhythmogenic cardiomyopathy (AC) is a major cause of sudden cardiac arrest in young adults, linked to mutations in the desmoplakin gene, particularly the R2834H mutation which is not well understood.
  • 3D models have been created to study how AC-inducing mutations and post-translational modifications affect the structure of desmoplakin’s extreme carboxyterminus tail (DP CT), revealing that PTMs can significantly change its interactions with intermediate filaments.
  • Virtual screening of FDA-approved drugs has identified potential treatments for cardiocutaneous diseases, suggesting that drug repurposing could be a viable strategy for addressing AC.
View Article and Find Full Text PDF

Macrocyclic peptides show promise in targeting high-value therapeutically relevant binding sites due to their high affinity and specificity. However, their clinical application is often hindered by low membrane permeability, which limits their effectiveness against intracellular targets. Previous studies focused on peptide conformations in various solvents, leaving a gap in understanding their interactions with and translocation through lipid bilayers.

View Article and Find Full Text PDF
Article Synopsis
  • * Unlike previous assumptions, the tumor-suppressive function of PARP4 is not linked to the vault complex, but rather involves its interaction with the splicing regulator hnRNPM.
  • * The research suggests that disruptions in splicing, particularly due to the loss of hnRNPM and PARP4, contribute to tumor formation in lung adenocarcinoma, highlighting a new mechanism in cancer biology.
View Article and Find Full Text PDF

The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) strains and the formation of non-growing, dormant "persisters" subsets help bacteria evade antibiotic treatment and enhance bacterial resistance, which poses a serious threat to human life and health. It is urgent to discover novel antibacterial therapies effective against MRSA persisters. Thymol is a common nutraceutical with weak antibacterial and antitumor activities.

View Article and Find Full Text PDF

Retinoic acid (RA) signaling is a master regulator of vertebrate development with crucial roles in directing body axis orientation and tissue differentiation, including in the reproductive system. However, a mechanistic understanding of how RA signaling promotes cell lineage identity in different tissues is often missing. Here, leveraging prostate organoid technology, we demonstrated that RA signaling orchestrates the commitment of adult mouse prostate progenitors to glandular identity, epithelial barrier integrity, and ultimately, proper specification of the prostatic lumen.

View Article and Find Full Text PDF

Proteoglycans contain glycosaminoglycans (GAGs) which are negatively charged linear polymers made of repeating disaccharide units of uronic acid and hexosamine units. They play vital roles in numerous physiological and pathological processes, particularly in governing cellular communication and attachment. Depending on their sulfonation state, acetylation, and glycosidic linkages, GAGs belong to different families.

View Article and Find Full Text PDF

The neuropeptide relaxin-3 is composed of an A chain and a B chain held together by disulfide bonds, and it modulates functions such as anxiety and food intake by binding to and activating its cognate receptor RXFP3, mainly through the B chain. Biased ligands of RXFP3 would help to determine the molecular mechanisms underlying the activation of G proteins and β-arrestins downstream of RXFP3 that lead to such diverse functions. We showed that the i, i+4 stapled relaxin-3 B chains, 14s18 and d(1-7)14s18, were Gα-biased agonists of RXFP3.

View Article and Find Full Text PDF

Although stapled α-helical peptides can address challenging targets, their advancement is impeded by poor understandings for making them cell permeable while avoiding off-target toxicities. By synthesizing >350 molecules, we present workflows for identifying stapled peptides against Mdm2(X) with in vivo activity and no off-target effects. Key insights include a clear correlation between lipophilicity and permeability, removal of positive charge to avoid off-target toxicities, judicious anionic residue placement to enhance solubility/behavior, optimization of C-terminal length/helicity to enhance potency, and optimization of staple type/number to avoid polypharmacology.

View Article and Find Full Text PDF

Stapled peptides are a promising class of molecules with potential as highly specific probes of protein-protein interactions and as therapeutics. Hydrocarbon stapling affects the peptide properties through the interplay of two factors: enhancing the overall hydrophobicity and constraining the conformational flexibility. By constructing a series of virtual peptides, we study the role of each factor in modulating the structural properties of a hydrocarbon-stapled peptide PM2, which has been shown to enter cells, engage its target Mouse Double Minute 2 (MDM2), and activate p53.

View Article and Find Full Text PDF

Summary: Protein structures carry signal of common ancestry and can therefore aid in reconstructing their evolutionary histories. To expedite the structure-informed inference process, a web server, Structome, has been developed that allows users to rapidly identify protein structures similar to a query protein and to assemble datasets useful for structure-based phylogenetics. Structome was created by clustering of the structures in RCSB PDB using 90% sequence identity and representing each cluster by a centroid structure.

View Article and Find Full Text PDF

DAXX (Death Domain Associated Protein 6) is frequently upregulated in various common cancers, and its suppression has been linked to reduced tumor progression. Consequently, DAXX has gained significant interest as a therapeutic target in such cancers. DAXX is known to function in several critical biological pathways including chromatin remodelling, transcription regulation, and DNA repair.

View Article and Find Full Text PDF

Antimicrobial peptides are promising alternatives to conventional antibiotics. Herein, we report a class of "tadpole-like" peptides consisting of an amphipathic α-helical head and an aromatic tail. A structure-activity relationship (SAR) study of "tadpole-like" temporin-SHf and its analogs revealed that increasing the number of aromatic residues in the tail, introducing Arg to the α-helical head and rearranging the peptide topology dramatically increased antimicrobial activity.

View Article and Find Full Text PDF

The scaffolding protein CARD11 is a critical mediator of antigen receptor signaling in lymphocytes. Hypomorphic (partial loss-of-function) mutations in CARD11 are associated with the development of severe atopic dermatitis, in which T cell receptor signaling is reduced and helper T cell differentiation is skewed to an allergy-associated type 2 phenotype. Here, we found that the docking protein DOK3 plays a key role in the pathogenesis of atopic dermatitis by suppressing CARD11 activity.

View Article and Find Full Text PDF

The c-Jun-NH2-terminal kinases (JNKs) regulate cell death, generally through the direct phosphorylation of both pro- and anti-apoptotic substrates. In this report, we demonstrate an alternate mechanism of JNK-mediated cell death involving the anti-apoptotic protein human apurinic/apyrimidinic endonuclease 1 (APE1). Treatment of cells with a variety of genotoxic stresses enhanced APE1-JNK (all isoforms of JNK1 or JNK2) interaction, specifically in cells undergoing apoptosis.

View Article and Find Full Text PDF

Cyclic peptides are poised to target historically difficult to drug intracellular protein-protein interactions, however, their general cell impermeability poses a challenge for characterizing function. Recent advances in microfluidics have enabled permeabilization of the cytoplasmic membrane by physical cell deformation (i.e.

View Article and Find Full Text PDF

Invasive fungal disease is an emerging and serious public health threat globally. The expanding population of susceptible individuals, together with the rapid emergence of multidrug-resistant fungi pathogens, call for the development of novel therapeutic strategies beyond the limited repertoire of licensed antifungal drugs. Card9 is a critical signaling molecule involved in antifungal defense; we have previously identified Dok3 to be a key negative regulator of Card9 activity in neutrophils.

View Article and Find Full Text PDF

MAD2 is a spindle assembly checkpoint protein that participates in the formation of mitotic checkpoint complex, which blocks mitotic progression. RNF8, an established DNA damage response protein, has been implicated in mitotic checkpoint regulation but its exact role remains poorly understood. Here, RNF8 proximity proteomics uncovered a role of RNF8-MAD2 in generating the mitotic checkpoint signal.

View Article and Find Full Text PDF