98%
921
2 minutes
20
In manufacturing, musculoskeletal robots have gained more attention with the potential advantages of flexibility, robustness, and adaptability over conventional serial-link rigid robots. Focusing on the fundamental lifting tasks, a hybrid controller is proposed to overcome control challenges of such robots for widely applications in industry. The metaverse technology offers an available simulated-reality-based platform to verify the proposed method. The hybrid controller contains two main parts. A muscle-synergy-based radial basis function (RBF) network is proposed as the feedforward controller, which is able to characterize the phasic and the tonic muscle synergies simultaneously. The adaptive dynamic programming (ADP) is applied as the feedback controller to address the optimal control problem. The actor-critic structure is applied in the ADP-based controller, where the critic network is trained to approximate the optimal performance index and the actor network is trained to compute the optimal muscle excitations. Furthermore, the convergence and stability of the ADP algorithm are also analyzed. Finally, experiments have been designed to verify the effectiveness of this hybrid controller on an upper limb musculoskeletal system, and the comparisons with other controllers are also illustrated. The results show that the proposed controller can obtain a satisfactory performance for lifting tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2024.3358739 | DOI Listing |
Khirurgiia (Mosk)
September 2025
Kursk State Medical University, Kursk, Russia.
Objective: To compare 6- and 12-month results of femoral artery repair with xenopericardial and autologous venous patch in hybrid treatment of critical lower limb ischemia.
Material And Methods: A retrospective analysis included 60 patients with critical lower limb ischemia who underwent hybrid treatment (balloon angioplasty and stenting of iliac arteries and open reconstruction of femoral arteries). Patients were divided into 2 groups by 30 people depending on femoral artery repair (group 1 - autologous venous patch, group 2 - xenopericardial patch).
Elife
September 2025
Chinese Academy of Medical Science Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
Influenza virus neuraminidase (NA) is a crucial target for protective antibodies, yet the development of recombinant NA protein as a vaccine has been held back by instability and variable expression. We have taken a pragmatic approach to improving expression and stability of NA by grafting antigenic surface loops from low-expressing NA proteins onto the scaffold of high-expressing counterparts. The resulting hybrid proteins retained the antigenic properties of the loop donor while benefiting from the high-yield expression, stability, and tetrameric structure of the loop recipient.
View Article and Find Full Text PDFG Ital Nefrol
August 2025
Infermiere Professionale SSD Nefrologia e Dialisi P.O. Soverato, ASP CZ.
Management of diabetes mellitus in hemodialysis is highly complex due to increased glycemic variability and hypoglycemic risk. The use of technologies applied to diabetes has been shown to improve glycemic control, however data in dialysis patients are limited. To describe the efficacy and safety of the minimed 780G AHCL system in a stable hemodialysis patient and during hospitalization in the Intensive Care Unit (ICU).
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Incorporating atomically thin two-dimensional (2D) materials with optical fibers expands their potential for optoelectronic applications. Recent advancements in chemical vapor deposition have enabled the batch production of these hybrid fibers, paving the way for practical implementation. However, their functionality remains constrained by the integration of a single 2D material, restricting their versatile performance.
View Article and Find Full Text PDFAdv Mater
September 2025
Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
Microrobots are expected to push the boundaries of robotics by enabling navigation in confined and cluttered environments due to their sub-centimeter scale. However, most microrobots perform best only in the specific conditions for which they are designed and require complete redesign and fabrication to adapt to new tasks and environments. Here, fully 3D-printed modular microrobots capable of performing a broad range of tasks across diverse environments are introduced.
View Article and Find Full Text PDF