98%
921
2 minutes
20
A facile NMR method is reported for analysis of ammonia from the electrochemical reduction of nitrogen, which compares a calibrated colorimetric method, a calibrated H NMR method and two H NMR direct measurements using external reference materials. Unlike spectrophotometric methods, H NMR requires less bench time and does not require separation of ammonia from the electrolyte. A novel approach to the problem of radiation damping in NMR measurements considered the specific role of hardware tuning. Radiation damping is suppressed improving signal-to-noise ratio and detection limit (1.5 µg L). The method is demonstrated to be effective for the analysis of ammonia from direct electrochemical nitrogen reduction in KOH, and from lithium-mediated nitrogen reduction in a non-aqueous solution. An uncertainty budget is prepared for the measurement of ammonia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202301373 | DOI Listing |
Phys Chem Chem Phys
September 2025
School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India.
This work presents a gas-phase experimental study on the reduction of NO (nitrogen dioxide) to HONO (nitrous acid) by two atmospherically significant volatile organic compounds (VOCs), namely, glycolaldehyde (Gla) and hydroxyacetone (HAc), under a simulated tropospheric condition. FTIR spectroscopic probing reveals that HONO is the only gaseous reduced product of NO in each reaction. The measured data indicate that the reactions in both cases occur in a 2 : 1 stoichiometry with respect to NO and Gla/HAc.
View Article and Find Full Text PDFNew Phytol
September 2025
State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
Microbial nitrate ammonification is a crucial process to retain nitrogen (N) in soils, thereby reducing N loss. Nitrate ammonification has been studied in enrichment and axenic bacterial cultures but so far has been merely ignored in environmental studies. In particular, the capability of arbuscular mycorrhizal fungi (AMF) to regulate nitrate ammonification has not yet been explored.
View Article and Find Full Text PDFWater Environ Res
September 2025
Suzhou Institute of Trade & Commerce, Suzhou, China.
This study investigated the efficacy of two microalgae treatment systems (Chlorella vulgaris monoculture and a Chlorella vulgaris-S395-2-Clonostachys rosea symbiotic system) in treating aquaculture wastewater, under varying concentrations of synthetic strigolactone analog (GR24). By exposing the systems to four GR24 doses (0, 10, 10, and 10 M), we examined the impact on biomass growth, photosynthesis, and wastewater treatment. Elevated GR24 concentrations bolstered metabolism and photosynthesis in the systems, fostering rapid symbiont growth and enhanced treatment efficiency.
View Article and Find Full Text PDFSmall Methods
September 2025
The Research Institute for Advanced Manufacturing, and Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China.
Nitrogen cycle is a fundamental biogeochemical loop existed for millions of years, which involves the transformation of nitrogen-containing chemicals in the environment. However, human activities, especially those since the Industrial Revolution, have significantly disrupted this balance, leading to environmental and energy challenges. Electrocatalysis nitrogen cycle (ENC) offers a promising alternative for the sustainable transformation of nitrogen compounds en route toward rebalancing, with reactions such as the electrocatalytic nitrogen reduction reaction (eNRR) and nitrate/nitrite reduction reaction (eNORR/eNORR) emerging as sustainable alternatives to the traditional Haber-Bosch process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, Vienna, 1090, Austria.
Density functional theory (DFT) is the standard approach for modeling MIL-101(Fe) and related Fe-based metal-organic frameworks, typically assuming a ferromagnetic high-spin configuration. However, this widely adopted approach overlooks a key electronic feature: Spin frustration in the triangular -O) nodes. Using flip-spin, broken-symmetry DFT, we identify the true ground state as an antiferromagnetic state that standard DFT fails to capture.
View Article and Find Full Text PDF