98%
921
2 minutes
20
Lake Victoria is the world's largest tropical lake and the third-largest water body, providing significant water resources for surrounding environments including the cultural, societal, and livelihood needs of people in its basin and along the White Nile. The aim of this study was to use decade-long time series of measured lake flow in the lake system and phosphorus deposition to develop a suitable numerical model based on shallow water equations (SWE) for assessing water quality in Lake Victoria, an increasingly important tool under climate variation. Different techniques were combined to identify a numerical model that included: i) a high-resolution SWE model to establish raindrop diffusion to trace pollutants; ii) a two-dimensional (2D) vertically integrated SWE model to establish lake surface flow and vertically transported wind speed flow acting on lake surface water by wind stress; and iii) a site-specific phosphorus deposition sub-model to calculate atmospheric deposition in the lake. A smooth (non-oscillatory) solution was obtained by applying a high-resolution scheme for a raindrop diffusion model. Analysis with the vertically integrated SWE model generated depth averages for flow velocity and associated changes in water level profile in the lake system and showed unidirectional whole lake wind blowing from the southwest to northeast. The atmospheric phosphorous deposition model enabled water value assessment for mass balances with different magnitudes of both inflows and outflows demonstrating annual total phosphorus at tons concentrating at mid-lake western and eastern parts. The model developed here is simple and suitable for use in assessing flow changes and lake level changes and can serve as a tool in studies of lake bathymetry and nutrient and pollution transport processes. Our study opens towards refining models of complex shallow-water systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862508 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e25125 | DOI Listing |
J Appl Clin Med Phys
September 2025
Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, USA.
Purpose: Real‑time magnetic resonance-guided radiation therapy (MRgRT) integrates MRI with a linear accelerator (Linac) for gating and adaptive radiotherapy, which requires robust image‑quality assurance over a large field of view (FOV). Specialized phantoms capable of accommodating this extensive FOV are therefore essential. This study compares the performance of four commercial MRI phantoms on a 0.
View Article and Find Full Text PDFJ Appl Clin Med Phys
September 2025
Department of Radiation Oncology, University of Utah, Salt Lake City, Utah, USA.
Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
Background: Recent advances in high-throughput sequencing technologies have enabled the collection and sharing of a massive amount of omics data, along with its associated metadata-descriptive information that contextualizes the data, including phenotypic traits and experimental design. Enhancing metadata availability is critical to ensure data reusability and reproducibility and to facilitate novel biomedical discoveries through effective data reuse. Yet, incomplete metadata accompanying public omics data may hinder reproducibility and reusability and limit secondary analyses.
View Article and Find Full Text PDFNat Cell Biol
September 2025
Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.
View Article and Find Full Text PDFJ Perinatol
September 2025
Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA.