Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Graph theory (GT) and complex network theory play an increasingly important role in the design, operation, and management of water distribution networks (WDNs) and these tasks were originally often heavily dependent on hydraulic models. Facing the general reality of the lack of high-precision hydraulic models in water utilities, GT has become a promising surrogate or assistive technology. However, there is a lack of a systematic review of how and where the GT techniques are applied to the field of WDNs, along with an examination of potential directions that GT can contribute to addressing WDNs' challenges. This paper presents such a review and first summarizes the graph construction methods and topological properties of WDNs, which are mathematical foundations for the application of GT in WDNs. Then, main application areas, including state estimation, performance evaluation, partitioning, optimal design, optimal sensor placement, critical components identification, and interdependent networks analysis, are identified and reviewed. GT techniques can provide acceptable results and valuable insights while having a low computational burden compared with hydraulic models. Combining GT with hydraulic model significantly enhances the performance of analysis methods. Four research challenges, namely reasonable abstraction, data availability, tailored topological indicators, and integration with Graph Neural Networks (GNNs), have been identified as key areas for advancing the application and implementation of GT in WDNs. This paper would have a positive impact on promoting the use of GT for optimal design and sustainable management of WDNs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.121238DOI Listing

Publication Analysis

Top Keywords

hydraulic models
12
complex network
8
network theory
8
water distribution
8
distribution networks
8
optimal design
8
wdns
6
review graph
4
graph complex
4
theory water
4

Similar Publications

Hydraulic constraints to stomatal conductance in flooded trees.

Oecologia

September 2025

School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.

Stomatal closure is a pervasive response among trees exposed to flooded soil. We tested whether this response is caused by reduced hydraulic conductance in the soil-to-leaf hydraulic continuum (k), and particularly by reduced root hydraulic conductance (k), which has been widely hypothesized. We tracked stomatal conductance at the leaf level (g) and canopy scale (G) along with physiological conditions in two temperate tree species, Magnolia grandiflora and Quercus virginiana, that were subjected to flood and control conditions in a greenhouse experiment.

View Article and Find Full Text PDF

Multiyear Drought Strengthens Positive and Negative Functional Diversity Effects on Tree Growth Response.

Glob Chang Biol

September 2025

Chair of Silviculture, Faculty of Environment and Natural Resources, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.

Mixed-species forests are proposed to enhance tree resistance and resilience to drought. However, growing evidence shows that tree species richness does not consistently improve tree growth responses to drought. The underlying mechanisms remain uncertain, especially under unprecedented multiyear droughts.

View Article and Find Full Text PDF

The unique biodiversity and vast carbon stocks of the Amazon rainforests are essential to the Earth System but are threatened by future water balance changes. Empirical evidence suggests that species and trait diversity may mediate forest drought responses, yet little evidence exists for tropical forest responses. In this simulation study, we identify key axes of trait variation and quantify the extent to which functional trait diversity increases tropical forests' drought resistance.

View Article and Find Full Text PDF

Accuracy of recording linear erosion using an unmanned aerial vehicle (UAV).

PLoS One

September 2025

Hydraulic Engineering and Water Management, School of Architecture and Civil Engineering, University of Applied Sciences, Saarbrücken, Germany.

Soil erosion is an ongoing environmental problem. To address this issue, calibrated erosion models are used to forecast areas vulnerable to erosion and to determine appropriate preventive measures. Model calibrations are based on erosion data recorded using different techniques such as photogrammetry from an unmanned aerial vehicle (UAV).

View Article and Find Full Text PDF

Borehole nuclear magnetic resonance (NMR) can be used to estimate the hydraulic conductivity (K) of unconsolidated materials. Various petrophysical models have been developed to predict K based on NMR response, with considerable efforts on optimizing site-specific constants. In this study, we assessed the utility of NMR logs to estimate K within highly heterogeneous glaciofluvial deposits by comparing them with K measurements from three types of co-located hydraulic testing methods, including permeameter, multi-level slug, and direct-push hydraulic profiling tool (HPT) logging tests.

View Article and Find Full Text PDF