mRNA Delivery: Challenges and Advances through Polymeric Soft Nanoparticles.

Int J Mol Sci

Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single-stranded messenger ribonucleic acid (mRNA) plays a pivotal role in transferring genetic information, and tremendous effort has been devoted over the years to utilize its transcription efficacy in therapeutic interventions for a variety of diseases with high morbidity and mortality. Lipid nanocarriers have been extensively investigated for mRNA delivery and enabled the rapid and successful development of mRNA vaccines against SARS-CoV-2. Some constraints of lipid nanocarriers have encouraged the development of alternative delivery systems, such as polymer-based soft nanoparticles, which offer a modular gene delivery platform. Such macromolecule-based nanocarriers can be synthetically articulated for tailored parameters including mRNA protection, loading efficacy, and targeted release. In this review, we highlight recent advances in the development of polymeric architectures for mRNA delivery, their limitations, and the challenges that still exist, with the aim of expediting further research and the clinical translation of such formulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855060PMC
http://dx.doi.org/10.3390/ijms25031739DOI Listing

Publication Analysis

Top Keywords

mrna delivery
12
soft nanoparticles
8
lipid nanocarriers
8
mrna
6
delivery challenges
4
challenges advances
4
advances polymeric
4
polymeric soft
4
nanoparticles single-stranded
4
single-stranded messenger
4

Similar Publications

The emergence of messenger ribonucleic acid (mRNA) vaccines as an alternative platform to traditional vaccines has been accompanied by advances in nanobiotechnology, which have improved the stability and delivery of these vaccines through novel nanoparticles (NPs). Specifically, the development of NPs for mRNA delivery has facilitated the loading, protection and release of mRNA in the biological microenvironment, leading to the stimulation of mRNA translation for effective intervention strategies. Intriguingly, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), have been permitted for emergency usage authorization to prevent COVID-19 infection by USFDA.

View Article and Find Full Text PDF

A new frontier in oncology: Understanding the landscape of cancer vaccines.

J Oncol Pharm Pract

September 2025

Department of Research & Development, Squad Medicine and Research (SMR), Amadalavalasa, Andhra Pradesh, India.

Cancer vaccines represent a transformative shift in oncology, aiming to prevent malignancies or treat established cancers by training the immune system to recognize tumor-specific or tumor-associated antigens. This review explores the diverse platforms and mechanisms supporting cancer vaccines, ranging from prophylactic vaccines such as HPV and hepatitis B vaccines that have significantly reduced virus-related cancers to therapeutic vaccines like Sipuleucel-T and T-VEC that extend survival in prostate cancer and melanoma. Vaccine types are classified, and delivery platforms including mRNA, peptide, dendritic cell and viral vector-based approaches are examined alongside pivotal clinical trial outcomes.

View Article and Find Full Text PDF

Messenger ribonucleic acid (mRNA), a promising tool in vaccine and therapeutic development, is reliant on intact mRNA delivery into target cells. Given its susceptibility to degradation, ensuring its stability is crucial, necessitating rigorous quality control throughout the product life cycle. This study presents an ion-pair reverse-phase liquid chromatography method that enables rapid and direct mRNA extraction from lipid nanoparticles, facilitated by using a surfactant in the sample preparation.

View Article and Find Full Text PDF

Nebulized Lipid Nanoparticles Deliver mRNA to the Liver for Treatment of Metabolic Diseases.

Nano Lett

September 2025

State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

An optimal administration approach is critical for effective mRNA delivery and treatment. Nebulizer inhalation offers a mild, convenient, and noninvasive strategy with high translational potential but primarily focused on lung delivery. In this study, we found that surface charges influence tissue targeting of mRNA lipid nanoparticle (mRNA-LNP) postnebulization.

View Article and Find Full Text PDF

A Safe and Broad-spectrum SARS-CoV-2 mRNA Vaccine with a New Delivery System for In-situ Expression.

Virol Sin

September 2025

State Key Laboratory of Virology and Biosafety, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Institute for Vaccine Research at Animal Bio-safety Level Ⅲ Laboratory, Wuhan University, Wuhan, 430071, China.

Since the outbreak of SARS-CoV-2 in late 2019, the cumulative number of confirmed cases worldwide has surpassed 778 million, and the number of deaths has exceeded 7 million, posing a significant threat to human life and health while inflicting enormous losses on the global economy. At the stage where sequential immunization is recommended, there is a pressing demand for mRNA vaccines that can be rapidly adapted to new sequences, are easy to industrialize, and exhibit high safety and effectiveness. We developed a lipid nanoparticle (LNP) system, designated as WNP, which facilitates essentially in situ expression at the injection site and results in lower levels of pro-inflammatory factors in the liver, thus enhancing its safety compared to liver-targeted alternatives.

View Article and Find Full Text PDF