98%
921
2 minutes
20
Recent studies showed that sugar beet pectin exhibited more excellent emulsifying properties than traditional citrus peel pectin and apple pectin ascribed to the higher content of neutral sugar, protein, ferulic acid, and acetyl groups. It is precisely because of the extremely complex molecular structure of pectin that the emulsifying properties of the pectin-Ca complex are still unclear. In this study, SBP-Ca complexes with different cross-linking degrees were prepared. Subsequently, their interfacial adsorption kinetics, the resistance of interfacial films to external perturbances, and the long-term stability of the emulsions formed by these SBP-Ca complexes were measured. The results indicated that the highly cross-linked SBP-Ca complex exhibited slower interfacial adsorption kinetics than SBP alone. Moreover, compared with SBP alone, the oil-water interfacial film loaded by the highly cross-linked SBP-Ca complex exhibited a lower elasticity and a poorer resistance to external perturbances. This resulted in a larger droplet size, a lower ζ-potential value, a larger continuous viscosity, and a worse long-term stability of the emulsion formed by the highly cross-linked SBP-Ca complex. This study has very important guiding significance for deeply understanding the emulsification mechanism of the pectin-Ca complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c00008 | DOI Listing |
Pol Merkur Lekarski
September 2025
BOGOMOLETS NATIONAL MEDICAL UNIVERSITY, KYIV, UKRAINE.
Objective: Aim: To evaluate the possibility of using cataract phacoemulsification with simultaneous intraocular lens (IOL) implantation in patients with age-related cataract (ARC) combined with pseudoexfoliation syndrome (PES) as an algorithm for the pseudoexfoliation glaucoma (PEG) prevention..
Patients And Methods: Materials and Methods: A retrospective case-control study was conducted using data from medical records of 610 outpatients (813 eyes) with ARC aged from 49 to 79 years (average age 69 ± 3 years).
Clin Orthop Relat Res
August 2025
Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY, USA.
Background: Choosing the appropriate implants for reconstruction in revision TKA is essential for long-term fixation. While cones and augments are routinely utilized to address tibial defects, the effect of augment location and size on the biomechanical stability of revision TKA constructs and the indications for the use of metaphyseal cones are not known.
Questions/purposes: Is the risk of cement-implant debonding of revision TKA constructs impacted by the thickness and location (medial versus bicompartmental) of tibial augments and the presence of metaphyseal cones during (1) a demanding daily activity like stair ascent and (2) torsional loads?
Methods: Under institutional review board approval, we developed patient-specific finite-element models of revision TKA from four patients (three males and one female, ages 50 to 80 years, BMI 27 to 37 kg/m2) who underwent two-stage revision and had a CT scan with no metal artifact after first-stage implant removal.
Sci Adv
September 2025
School of Electrical and Electronic Engineering, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Brain-computer interfaces (BCIs) enable direct communication between the brain and computers. However, their long-term functionality remains limited due to signal degradation caused by acute insertion trauma, chronic foreign body reaction (FBR), and biofouling at the device-tissue interface. To address these challenges, we introduce a multifunctional surface modification strategy called targeting-specific interaction and blocking nonspecific adhesion (TAB) coating for flexible fiber, achieving a synergistic integration of mechanical compliance and biochemical stability.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
September 2025
Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Turkey.
Biodegradable biosensors represent a transformative advancement in sustainable sensing technology, offering an environmentally friendly and biocompatible alternative to traditional sensors. This review examines recent advancements, material innovations, degradation mechanisms, and application areas of biodegradable biosensors within the biomedical and environmental sectors. Natural and synthetic biodegradable polymers, such as chitosan, silk fibroin, alginate, PLA, PLGA, and PVA, are assessed for their functional contributions to sensing platforms.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
September 2025
LJ Institute of Pharmacy, Department of Pharmaceutical Technology, LJK University, Ahmedabad, India.
Schizophrenia is a persistent and incapacitating neuropsychiatric condition that presents considerable obstacles regarding pharmacological administration and therapeutic effectiveness. Lipidic nanocarriers, including Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), have emerged as effective drug delivery vehicles for enhancing the bioavailability, stability, and controlled release of antipsychotic medicines. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have several benefits, such as improved drug loading capacity, less systemic adverse effects, and superior efficacy in traversing the blood-brain barrier compared to conventional formulations.
View Article and Find Full Text PDF