98%
921
2 minutes
20
Cover crop cultivation can be a vital strategy for mitigating climate change in agriculture, by increasing soil carbon stocks and resource efficiency within the cropping system. Another mitigation option is to harvest the cover crop and use the biomass to replace greenhouse gas-intensive products, such as fossil fuels. Harvesting cover crop biomass could also reduce the risk of elevated NO emissions associated with cover crop cultivation under certain conditions, which would offset much of the mitigation potential. However, harvesting cover crops also reduces soil carbon sequestration potential, as biomass is removed from the field, and cultivation of cover crops requires additional field operations that generate greenhouse gas emissions. To explore these synergies and trade-offs, this study investigated the life cycle climate effect of cultivating an oilseed radish cover crop under different management strategies in southern Scandinavia. Three alternative scenarios (Incorporation of biomass into soil; Mowing and harvesting aboveground biomass; Uprooting and harvesting above- and belowground biomass) were compared with a reference scenario with no cover crop. Harvested biomass in the Mowing and Uprooting scenarios was assumed to be transported to a biogas plant for conversion to upgraded biogas, with the digestate returned to the field as an organic fertiliser for the subsequent crop. The climate change mitigation potential of cover crop cultivation was found to be 0.056, 0.58 and 0.93 Mg CO-eq ha in the Incorporation, Mowing and Uprooting scenario, respectively. The Incorporation scenario resulted in the highest soil carbon sequestration, but also the greatest soil NO emissions. Substitution of fossil diesel showed considerable mitigation potential, especially in the Uprooting scenario, where biogas production was highest. Sensitivity analysis revealed a strong impact of time of cover crop establishment, with earlier establishment leading to greater biomass production and thus greater mitigation potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.170629 | DOI Listing |
Toxicol Sci
September 2025
Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS, B3H 3Z1, Canada.
In the zebrafish larval toxicity model, phenotypic changes induced by chemical exposure can potentially be explained and predicted by the analysis of gene expression changes at sub-phenotypic concentrations. The increase in knowledge of gene pathway-specific effects arising from the zebrafish transcriptomic model has the potential to enhance the role of the larval zebrafish as a component of Integrated Approaches to Testing and Assessment (IATA). In this paper, we compared the transcriptomic responses of triphenyl phosphate between two standard exposure paradigms, the Zebrafish Embryo Toxicity (ZET) and General and Behavioural Toxicity (GBT) assays.
View Article and Find Full Text PDFCell Rep
September 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Seedlings emerged from the covering soil immediately undergo de-etiolation, ensuring plants switch from heterotrophic to photoautotrophic growth. This transition is essential for seedling development and survival. However, the underlying mechanism remains largely obscure.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Guizhou Institute of Forest Inventory and Planning, Guiyang 550003, China.
Global warming is accelerating the poleward and upward shifts in climatically suitable ranges of species. (switchgrass) is recognized for its dual value in China's dual-carbon strategy: mitigating food-energy land competition and restoring marginal ecosystems. However, the accuracy of habitat projections is constrained by three limitations: reliance on North American provenance data, uncalibrated model parameters, and insufficient scenario coverage.
View Article and Find Full Text PDFMol Phylogenet Evol
September 2025
USDA Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Crop Genome Informatics Laboratory, 819 Wallace Rd, Ames, 50011, IA, United States. Electronic address:
Contradictory lines of evidence have made it difficult to resolve the phylogenetic history of the legume diversification era; this is true for the backbone topology, and for the number and timing of whole genome duplications (WGDs). By analyzing the transcriptomic data for 473 gene families in 76 species covering all six accepted legume subfamilies, we assessed the phylogenetic relationships of the legume backbone and uncovered evidence of independent whole genome duplications in each of the six legume subfamilies. Three subfamilies - Cercidoideae, Dialioideae, and Caesalpinioideae - bear evidence of an allopolyploid duplication pattern suggestive of ancient hybridization.
View Article and Find Full Text PDFJ Exp Bot
September 2025
Université Côte d'Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France.
Plants must continuously adapt to their biotic and abiotic environment in order to survive, grow, and reproduce. Redox reactions play a central role in these processes, influencing numerous aspects of plant physiology, from transcriptional regulation to environmental perception, through the modulation of cellular metabolism. Redox regulation is driven by changes in the concentrations of reactive oxygen and nitrogen species (ROS/RNS), as well as antioxidants, which impact plant functioning.
View Article and Find Full Text PDF