Integrated physiology, transcriptome and proteome analyses highlight the potential roles of multiple hormone-mediated signaling pathways involved in tapping panel dryness in rubber tree.

Plant Sci

Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China. El

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Currently, one of the most serious threats to rubber tree is the tapping panel dryness (TPD) that greatly restricts natural rubber production. Over-tapping or excessive ethephon stimulation is regarded as the main cause of TPD occurrence. Although extensive studies have been carried out, the molecular mechanism underlying TPD remains puzzled. An attempt was made to compare the levels of endogenous hormones and the profiles of transcriptome and proteome between healthy and TPD trees. Results showed that most of endogenous hormones such as jasmonic acid (JA), 1-aminocyclopropanecarboxylic acid (ACC), indole-3-acetic acid (IAA), trans-zeatin (tZ) and salicylic acid (SA) in the barks were significantly altered in TPD-affected rubber trees. Accordingly, multiple hormone-mediated signaling pathways were changed. In total, 731 differentially expressed genes (DEGs) and 671 differentially expressed proteins (DEPs) were identified, of which 80 DEGs were identified as putative transcription factors (TFs). Further analysis revealed that 12 DEGs and five DEPs regulated plant hormone synthesis, and that 16 DEGs and six DEPs were involved in plant hormone signal transduction pathway. Nine DEGs and four DEPs participated in rubber biosynthesis and most DEGs and all the four DEPs were repressed in TPD trees. All these results highlight the potential roles of endogenous hormones, signaling pathways mediated by these hormones and rubber biosynthesis pathway in the defense response of rubber trees to TPD. The present study extends our understanding of the nature and mechanism underlying TPD and provides some candidate genes and proteins related to TPD for further research in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2024.112011DOI Listing

Publication Analysis

Top Keywords

degs deps
16
signaling pathways
12
endogenous hormones
12
transcriptome proteome
8
highlight potential
8
potential roles
8
multiple hormone-mediated
8
hormone-mediated signaling
8
tapping panel
8
panel dryness
8

Similar Publications

GA participates in FR light-induced internode elongation of cucumber by regulating the expression of genes/proteins related to aquaporins, expansins, cell wall biosynthesis, hormone metabolism, and signal transduction. This study investigated the effects of the interaction between far-red (FR) light and gibberellin (GA) on the internode elongation of cucumber (Cucumis sativus L. 'Zhongnong No.

View Article and Find Full Text PDF

Comprehensive Analysis of lncRNA/circRNAs-miRNA-mRNA Networks of Oral Lichen Planus.

J Inflamm Res

August 2025

Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.

Background: Oral lichen planus (OLP) is T cell-mediated inflammatory disease affecting the oral mucosa, and its molecular mechanism remains poorly understood.

Objective: This study aimed to screen for OLP-related hub genes and construct a network of competing endogenous RNAs (ceRNAs) to explore the crucial mechanisms involved in the disease.

Methods: Proteomic and transcriptomic sequencing were performed on oral mucosa collected from OLP patients and healthy participants, respectively.

View Article and Find Full Text PDF

Background: Pulmonary arterial hypertension (PAH), a serious disease, is characterized by various degrees of pulmonary vascular remodeling, inflammation, and increased vascular resistance, leading to fatalities in patients with severe conditions. However, the molecular mechanisms underlying the pathogenesis of PAH remain incompletely understood.

Methods: RNA sequencing (RNA-seq), 4D label-free proteomics, and phosphoproteomics were employed to detect the levels of mRNA, proteins, and phosphorylation modification in the lung tissues of PAH patients, compared to those in the control group.

View Article and Find Full Text PDF

Transcriptomic and Proteomic Insights Into Buffalo Milk Fat Synthesis and the Role of IGFBP4 in BMECs.

FASEB J

August 2025

Guangxi Zhuang Autonomous Region Buffalo Milk Quality and Safety Control Technology Engineering Research Center, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.

The content and composition of milk fat are critical determinants influencing milk flavor, nutritional value, and economic significance. Buffalo milk is characterized by its high-fat content and complex lipid profile, characterized by elevated levels of health-beneficial fatty acids such as linoleic acid, α-linolenic acid, and arachidonic acid. However, the molecular regulatory mechanisms governing milk fat synthesis in buffaloes remain incompletely elucidated.

View Article and Find Full Text PDF

Alfalfa () is the most widely cultivated and important forage crop worldwide, owing to its high protein content. However, alfalfa root rot seriously affects and restricts the yield and quality. This study explores the response mechanism of alfalfa to root rot.

View Article and Find Full Text PDF