98%
921
2 minutes
20
Background: The precise estimation of cases with significant fibrosis (SF) is an unmet goal in non-alcoholic fatty liver disease (NAFLD/MASLD).
Aims: We evaluated the performance of machine learning (ML) and non-patented scores for ruling out SF among NAFLD/MASLD patients.
Methods: Twenty-one ML models were trained (N = 1153), tested (N = 283), and validated (N = 220) on clinical and biochemical parameters of histologically-proven NAFLD/MASLD patients (N = 1656) collected across 14 centres in 8 Asian countries. Their performance for detecting histological-SF (≥F2fibrosis) were evaluated with APRI, FIB4, NFS, BARD, and SAFE (NPV/F1-score as model-selection criteria).
Results: Patients aged 47 years (median), 54.6% males, 73.7% with metabolic syndrome, and 32.9% with histological-SF were included in the study. Patients with SFvs.no-SF had higher age, aminotransferases, fasting plasma glucose, metabolic syndrome, uncontrolled diabetes, and NAFLD activity score (p < 0.001, each). ML models showed 7%-12% better discrimination than FIB-4 to detect SF. Optimised random forest (RF) yielded best NPV/F1 in overall set (0.947/0.754), test set (0.798/0.588) and validation set (0.852/0.559), as compared to FIB4 in overall set (0.744/0.499), test set (0.722/0.456), and validation set (0.806/0.507). Compared to FIB-4, RF could pick 10 times more patients with SF, reduce unnecessary referrals by 28%, and prevent missed referrals by 78%. Age, AST, ALT fasting plasma glucose, and platelet count were top features determining the SF. Sequential use of SAFE < 140 and FIB4 < 1.2 (when SAFE > 140) was next best in ruling out SF (NPV of 0.757, 0.724 and 0.827 in overall, test and validation set).
Conclusions: ML with clinical, anthropometric data and simple blood investigations perform better than FIB-4 for ruling out SF in biopsy-proven Asian NAFLD/MASLD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/apt.17891 | DOI Listing |
Front Digit Health
August 2025
Department of Ophthalmology, Stanford University, Palo Alto, CA, United States.
Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
Neurotrauma Rep
August 2025
Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).
View Article and Find Full Text PDFJ Clin Exp Hepatol
August 2025
Dept of Histopathology, PGIMER, Chandigarh, 160012, India.
Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.
View Article and Find Full Text PDFFront Rehabil Sci
August 2025
Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.
Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.