98%
921
2 minutes
20
Background: Genome streamlining, the process by which genomes become smaller and encode fewer genes over time, is a common phenomenon among pathogenic bacteria. This reduction is driven by selection for minimized energy expenditure in a nutrient-rich environment. As pathogens evolve to become more reliant on the host, metabolic genes and resulting capabilities are lost in favor of siphoning metabolites from the host. Characterizing genome streamlining, gene loss, and metabolic pathway degradation can be useful in assessing pathogen dependency on host metabolism and identifying potential targets for host-directed therapeutics.
Results: PoMeLo (Predictor of Metabolic Loss) is a novel evolutionary genomics-guided computational approach for identifying metabolic gaps in the genomes of pathogenic bacteria. PoMeLo leverages a centralized public database of high-quality genomes and annotations and allows the user to compare an unlimited number of genomes across individual genes and pathways. PoMeLo runs locally using user-friendly prompts in a matter of minutes and generates tabular and visual outputs for users to compare predicted metabolic capacity between groups of bacteria and individual species. Each pathway is assigned a Predicted Metabolic Loss (PML) score to assess the magnitude of genome streamlining. Optionally, PoMeLo places the results in an evolutionary context by including phylogenetic relationships in visual outputs. It can also initially compute phylogenetically-weighted mean genome sizes to identify genome streamlining events. Here, we describe PoMeLo and demonstrate its use in identifying metabolic gaps in genomes of pathogenic Treponema species.
Conclusions: PoMeLo represents an advance over existing methods for identifying metabolic gaps in genomic data, allowing comparison across large numbers of genomes and placing the resulting data in a phylogenetic context. PoMeLo is freely available for academic and non-academic use at https://github.com/czbiohub-sf/pomelo .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10829301 | PMC |
http://dx.doi.org/10.1186/s12859-024-05640-w | DOI Listing |
Nat Rev Urol
September 2025
Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
Low-grade non-muscle invasive bladder cancer is a specific category of bladder cancer with a favourable prognosis; however, its management presents several challenges. The risk of stage progression is very low, but approximately half of patients will experience recurrence within the first 5 years after diagnosis. This high propensity for recurrence, coupled with the threat of progression, mandates ongoing surveillance.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Chemistry and Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, United States.
Glycine is an important metabolite and cell signal in diverse organisms, yet tools to visualize intracellular glycine dynamics have not been developed. In this study, diverse and bright RNA-based glycine biosensors were developed by fusing the architecturally complex glycine riboswitch with Broccoli class fluorogenic aptamers. The brightest sensor with the highest activation, glyS, and its two-dye ratiometric counterpart, Pepper-glyS, allowed for visualization of a drug-induced accumulation of endogenous glycine in live Escherichia colicells.
View Article and Find Full Text PDFJ Natl Cancer Inst
September 2025
Associate Director Laboratory for Molecular Pediatric Pathology (LaMPP), Boston Children's Hospital, Harvard Medical School, Boston, 02115, MA, USA.
Next-generation sequencing (NGS) has transformed cancer care by providing essential insights for diagnosis, prognosis, and treatment. However, variability in testing timing, reporting practices, and interpretation challenges limits its clinical impact. This manuscript highlights key opportunities to optimize somatic reporting, emphasizing the importance of timely testing throughout the cancer care continuum to maximize the diagnostic and therapeutic relevance of findings.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
Pufferfish exhibit the smallest vertebrate genomes, making them ideal models for investigating evolutionary patterns and processes that affect genome size. While the Takifugu rubripes genome was fully sequenced two decades ago, key evolutionary drivers remain elusive. We sequenced 10 pufferfish genomes and generated 35 transcriptomes and 13 methylomes to understand genomic evolutionary mechanisms.
View Article and Find Full Text PDFRSC Chem Biol
July 2025
Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University Max-von-Laue-Str. 9 D-60438 Frankfurt am Main Germany
Herein we present the rapid development of LH168, a potent and highly selective chemical probe for WDR5, streamlined by utilizing a DEL-ML (DNA encoded library-machine learning) hit as the chemical starting point. LH168 was comprehensively characterized in bioassays and demonstrated potent target engagement at the WIN-site pocket of WDR5, with an EC of approximately 10 nM, a long residence time, and exceptional proteome-wide selectivity for WDR5. In addition, we present the X-ray co-crystal structure and provide insights into the structure-activity relationships (SAR).
View Article and Find Full Text PDF