98%
921
2 minutes
20
Trimetallic nanowires (NWs) have drawn much attention in efficient alcohol oxidation reaction (AOR) due to their unique features, including high atomic utilization efficiency and fast electron transfer ability. However, a universal strategy to synthesize Pd-based trimetallic NWs with high catalytic performance is still lacking. Herein, we develop a universal method for facile synthesis of PdBiM (M = Pt, Ru, Ir, Co, Cu) NWs with excellent AOR activities. By taking PdBiPt NWs as an example, the formation mechanism was investigated, and it is found that introduction of bismuth (Bi) plays an important role in facilitating the formation of the NW structure. Moreover, the PdBiPt NWs deliver an outstanding performance toward both the ethanol oxidation reaction (EOR) and the methanol oxidation reaction (MOR). Density functional theory (DFT) calculations together with experimental results disclose that the moderate electronic structure of trimetallic PdBiPt NWs can optimize the adsorption of OH and weaken the adsorption of CO, thereby leading to the substantially enhanced AOR performance. We believe that this work can inspire the design of multimetallic NWs as high-performance catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr06200g | DOI Listing |
Org Biomol Chem
September 2025
Research Centre of Modern Analytical Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
A tetrahydroxydiboron-mediated radical cyclization of unactivated alkenes under photoinduced reaction conditions was developed to synthesize ring-fused quinazolinones for the first time. The concise, mild and photocatalyst- and oxidant-free conditions, as well as the good functional group tolerance, render this protocol a green and convenient strategy for synthesizing polycyclic ring-fused quinazolinones. Mechanistic studies indicated that the process might involve a radical pathway.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
Low molecular weight amines promote sulfate (SO and HSO) formation through acid-base reactions, contributing to fine particulate matter (PM). Heterogeneous ozonation converts nontoxic amine salts into highly toxic products, yet the ozonation activation mechanism is unclear. This work reveals a sulfate-dominant ozonation mechanism of amine salts in fine PM by combining advanced mass spectrometry and ab initio calculation methods.
View Article and Find Full Text PDFSmall
September 2025
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia.
Plastic waste continues to be a major environmental challenge, worsened by energy-intensive conventional recycling methods that require highly pure feedstocks. In this review, emerging electrochemical upcycling technologies are critically examined, focusing on the electro-oxidation transformation of polyethylene terephthalate (PET) into valuable chemical products. Key reaction pathways and target products are outlined to clarify the selective electrochemical reforming of PET.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India.
This work presents a gas-phase experimental study on the reduction of NO (nitrogen dioxide) to HONO (nitrous acid) by two atmospherically significant volatile organic compounds (VOCs), namely, glycolaldehyde (Gla) and hydroxyacetone (HAc), under a simulated tropospheric condition. FTIR spectroscopic probing reveals that HONO is the only gaseous reduced product of NO in each reaction. The measured data indicate that the reactions in both cases occur in a 2 : 1 stoichiometry with respect to NO and Gla/HAc.
View Article and Find Full Text PDFChemSusChem
September 2025
Department of Electrosynthesis, Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany.
Electrochemical dehydration reaction is a fascinating and underexplored field of research, which has started to attract significant attention in recent years. Dehydration reactions are characterized by the formal removal of water in the course of the transformation, and they are among the most fundamental types of reactions found throughout chemistry. Examples are esterification reactions, amidation reactions, and the synthesis of carbon-heteroatom multiple bonds.
View Article and Find Full Text PDF