Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Notch signaling is aberrantly activated in approximately 30% of hepatocellular carcinoma (HCC), significantly contributing to tumorigenesis and disease progression. Expression of the major Notch receptor, NOTCH1, is upregulated in HCC cells and correlates with advanced disease stages, although the molecular mechanisms underlying its overexpression remain unclear. Here, we report that expression of the intracellular domain of NOTCH1 (NICD1) is upregulated in HCC cells due to antagonism between the E3-ubiquitin ligase F-box/WD repeat-containing protein 7 (FBXW7) and the large scaffold protein abnormal spindle-like microcephaly-associated protein (ASPM) isoform 1 (ASPM-i1). Mechanistically, FBXW7-mediated polyubiquitination and the subsequent proteasomal degradation of NICD1 are hampered by the interaction of NICD1 with ASPM-i1, thereby stabilizing NICD1 and rendering HCC cells responsive to stimulation by Notch ligands. Consistently, downregulating ASPM-i1 expression reduced the protein abundance of NICD1 but not its FBXW7-binding-deficient mutant. Reinforcing the oncogenic function of this regulatory module, the forced expression of NICD1 significantly restored the tumorigenic potential of ASPM-i1-deficient HCC cells. Echoing these findings, NICD1 was found to be strongly co-expressed with ASPM-i1 in cancer cells in human HCC tissues (P < 0.001). In conclusion, our study identifies a novel Notch signaling regulatory mechanism mediated by protein-protein interaction between NICD1, FBXW7, and ASPM-i1 in HCC cells, representing a targetable vulnerability in human HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920086PMC
http://dx.doi.org/10.1002/1878-0261.13589DOI Listing

Publication Analysis

Top Keywords

hcc cells
16
intracellular domain
8
hepatocellular carcinoma
8
upregulated hcc
8
nicd1
7
cells
6
hcc
6
aspm stabilizes
4
notch
4
stabilizes notch
4

Similar Publications

Background And Aims: Hepatocellular carcinoma (HCC) has a poor prognosis and limited treatment options. TGF-β is a promising therapeutic target, but its dual role, as both a tumour suppressor and promoter, complicates its clinical application. While its effects on tumour cells are increasingly understood, its impact on the tumour stroma remains unclear.

View Article and Find Full Text PDF

This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a prevalent malignant neoplasm of the digestive system, including 80% of primary liver malignancies. The Wnt/β-catenin signaling pathway plays a key role in immune response and tumer resistance. A growing number of studies have shown that the Wnt/β-catenin signaling pathway is involved in the pathogenesis of HCC.

View Article and Find Full Text PDF

vtRNA1-1 drives regorafenib resistance by sustaining cancer stemness via impaired autophagy and altered svRNA biogenesis.

Int J Biol Macromol

September 2025

Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, PR China; Shanghai Eye Diseases Prevention &Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, PR China. Electronic address

While vault RNA1-1 (vtRNA1-1) has been implicated in tumor biology, its specific role in cancer stemness and regorafenib resistance remains unexplored. In this study, we identify vtRNA1-1 as a critical regulator of cancer stemness and chemoresistance in Hepatocellular carcinoma (HCC). vtRNA1-1 enhances stemness properties by modulating the nuclear accumulation of Nanog, a core transcription factor.

View Article and Find Full Text PDF

Objective: To investigate the mechanism by which C5ORF13 promotes epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) through interaction with eukaryotic translation initiation factor 6 (eIF6) and its clinical significance, and to identify the potential use of valproic acid (VPA) as an eIF6 inhibitor in HCC.

Methods: The expression of C5ORF13 in HCC and its prognostic impact were analyzed using GEPIA, UALCAN, and The HUMAN PROTEIN ATLAS databases. Lentiviral transfection technology was used to knock down or overexpress C5ORF13 and eIF6.

View Article and Find Full Text PDF