Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Humans impact terrestrial, marine and freshwater ecosystems, yet many broad-scale studies have found no systematic, negative biodiversity changes (for example, decreasing abundance or taxon richness). Here we show that mixed biodiversity responses may arise because community metrics show variable responses to anthropogenic impacts across broad spatial scales. We first quantified temporal trends in anthropogenic impacts for 1,365 riverine invertebrate communities from 23 European countries, based on similarity to least-impacted reference communities. Reference comparisons provide necessary, but often missing, baselines for evaluating whether communities are negatively impacted or have improved (less or more similar, respectively). We then determined whether changing impacts were consistently reflected in metrics of community abundance, taxon richness, evenness and composition. Invertebrate communities improved, that is, became more similar to reference conditions, from 1992 until the 2010s, after which improvements plateaued. Improvements were generally reflected by higher taxon richness, providing evidence that certain community metrics can broadly indicate anthropogenic impacts. However, richness responses were highly variable among sites, and we found no consistent responses in community abundance, evenness or composition. These findings suggest that, without sufficient data and careful metric selection, many common community metrics cannot reliably reflect anthropogenic impacts, helping explain the prevalence of mixed biodiversity trends.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41559-023-02305-4DOI Listing

Publication Analysis

Top Keywords

anthropogenic impacts
16
taxon richness
12
community metrics
12
consistently reflected
8
abundance taxon
8
mixed biodiversity
8
responses community
8
invertebrate communities
8
community abundance
8
evenness composition
8

Similar Publications

Elevated acidity from natural and anthropogenic sources can be a significant stressor for plants, affecting essential processes such as nutrient uptake and growth. While low pH (< 4) is generally considered stressful for plants, differential impacts of distinct acid types-organic versus inorganic, strong versus weak-on plant growth and development remain unclear. To address this knowledge gap, we evaluated the responses of two Brassicaceae species to organic (acetic) and inorganic (hydrochloric, sulfuric) acids at three pH levels (pH 2.

View Article and Find Full Text PDF

Physical habitat gradients in small rivers and streams profoundly influence aquatic community structure. These ecosystems are critical for biodiversity conservation, serving as refugia and nurseries for numerous species. Effective freshwater conservation necessitates tailored strategies addressing specific anthropogenic pressures and each habitat type's unique geomorphological and hydrological characteristics.

View Article and Find Full Text PDF

Air pollution and diseases: signaling, G protein-coupled and Toll like receptors.

Pharmacol Ther

September 2025

Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. Electronic address:

Air pollution is a significant public health issue that impacts lung health, particularly in vulnerable populations such as children, the elderly, and individuals with pre-existing respiratory conditions. Both natural and anthropogenic sources of air pollution give rise to a variety of toxic compounds, including particulate matter (PM), ozone (O₃), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), and polycyclic aromatic hydrocarbons (PAHs). Exposure to these pollutants is strongly associated with the development and exacerbation of respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and idiopathic pulmonary fibrosis (IPF).

View Article and Find Full Text PDF

Boat noise alters behaviour of two coral reef macroinvertebrates, Lambis lambis and Tridacna maxima.

Mar Pollut Bull

September 2025

Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

Boat noise has been shown to distract and cause harm to many marine organisms. Most of the study effort has focused on fish & marine mammals, even though invertebrates represent over 92 % of all marine life. The few studies conducted on invertebrates have demonstrated clear negative effects of anthropogenic noise pollution.

View Article and Find Full Text PDF

Exploring Bacterial Interactions Under the Stress Gradient Hypothesis in Response to Selenium Stress.

Environ Microbiol Rep

October 2025

Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA.

The Stress Gradient Hypothesis (SGH) predicts that interspecific interactions shift from competition under low stress to facilitation under high stress. Historically, this framework has been extensively studied in plants, but its application to microbial communities remains underexplored. Here, we review literature to examine bacterial interactions under heavy metal stress, using selenium (Se) stress as a model for heavy metal-induced environmental pressures.

View Article and Find Full Text PDF