The past 50 years have seen biomonitoring emerge as an essential means of generating the knowledge needed to inform protection and restoration of freshwater ecosystems. Despite the successes of biomonitoring, most freshwater ecosystems remain unmonitored. Moreover, degradation of freshwaters continues at a rapid rate with new threats and novel stressors emerging that are difficult to assess using existing techniques.
View Article and Find Full Text PDFDrying river networks include non-perennial reaches that cease to flow or dry, and drying is becoming more prevalent with ongoing climate change. Biodiversity responses to drying have been explored mostly at local scales in a few regions, such as Europe and North America, limiting our ability to predict future global scenarios of freshwater biodiversity. Locally, drying acts as a strong environmental filter that selects for species with adaptations promoting resistance or resilience to desiccation, thus reducing aquatic α-diversity.
View Article and Find Full Text PDFMicroplastic contamination in freshwater systems poses serious ecological risks, yet the role of particle size in shaping these impacts remains underexplored. This study investigates the influence of microplastic size on bioturbation activities of Chironomus riparius larvae, a process essential for sediment dynamics and nutrient cycling. Employing luminophore sediment profile imaging (LSPI), we tracked the vertical distribution of polyethylene particles within sediment layers, focusing on two distinct size ranges: small (53-63 μm) and large (250-300 μm) spherical particles.
View Article and Find Full Text PDFData Brief
February 2025
Freshwater ecosystems represent an unparalleled diversity of habitats and species, but the actual distribution of many species remains obscured or incomplete The aim of the survey was to contribute to the knowledge on the fauna of lesser-known areas and fill the gaps in the distribution maps of the species. The dataset is based on a one-year-long study surveying 60 locations from different drying river networks that represent different ecoregions in Central Europe: Balcanic (Croatia, 15 sites), Continental (Czechia, 20 sites) and Pannonian (Hungary, 25 sites). Multihabitat sampling approach was applied for collecting stream-dwelling macroinvertebrates.
View Article and Find Full Text PDFBiodivers Data J
December 2024
A doubt has arisen about the taxonomic status of within the species group due to morphological similarities and lack of molecular data. In this study, a comprehensive morphological and molecular analysis of specimens from Central Europe was conducted, focusing on the Hungarian population. Morphological comparisons of genital structures revealed age-dependent variations, suggesting a gradual transition from to .
View Article and Find Full Text PDFInland navigation in Europe is proposed to increase in the coming years, being promoted as a low-carbon form of transport. However, we currently lack knowledge on how this would impact biodiversity at large scales and interact with existing stressors. Here we addressed this knowledge gap by analysing fish and macroinvertebrate community time series across large European rivers comprising 19,592 observations from 4,049 sampling sites spanning the past 32 years.
View Article and Find Full Text PDFStandardised terminology in science is important for clarity of interpretation and communication. In invasion science - a dynamic and rapidly evolving discipline - the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions.
View Article and Find Full Text PDFA detailed understanding of microplastics (MPs) behaviour in freshwater ecosystems is crucial for a proper ecological assessment. This includes the identification of significant transport pathways and net accumulation zones, considering their inherent, and already proven influence on aquatic ecosystems. Bioavailability of toxic agents is significantly influenced by macroinvertebrates' behaviour, such as bioturbation and burrowing, and their prior exposure history.
View Article and Find Full Text PDFHumans impact terrestrial, marine and freshwater ecosystems, yet many broad-scale studies have found no systematic, negative biodiversity changes (for example, decreasing abundance or taxon richness). Here we show that mixed biodiversity responses may arise because community metrics show variable responses to anthropogenic impacts across broad spatial scales. We first quantified temporal trends in anthropogenic impacts for 1,365 riverine invertebrate communities from 23 European countries, based on similarity to least-impacted reference communities.
View Article and Find Full Text PDFSci Total Environ
January 2024
Non-native species introductions have been acknowledged as one of the main drivers of freshwater biodiversity decline worldwide, compromising provided ecosystem services and functioning. Despite growing introduction numbers of non-native species, their impacts in conjunction with anthropogenic stressors remain poorly documented. To fill this gap, we studied temporal changes in α (local scale) and γ (regional scale), as well as β (ratio between γ and α) diversity of non-native freshwater macroinvertebrate species in three European countries (the Netherlands, England and Hungary) using long-term time series data of up to 17 years (2003-2019).
View Article and Find Full Text PDFOwing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients.
View Article and Find Full Text PDFThe essential key to routine molecular species identification (DNA barcoding/metabarcoding) is the existence of an error-free DNA barcode reference library providing full coverage of all species. Published studies generally state the need to produce more barcodes, and control their quality, but unfortunately, the number of barcoded species is still low. However, to initiate real progress, we need to know where the gaps lie, how big they are and why they persist.
View Article and Find Full Text PDFGlob Chang Biol
August 2022
Dispersal is an essential process in population and community dynamics, but is difficult to measure in the field. In freshwater ecosystems, information on biological traits related to organisms' morphology, life history and behaviour provides useful dispersal proxies, but information remains scattered or unpublished for many taxa. We compiled information on multiple dispersal-related biological traits of European aquatic macroinvertebrates in a unique resource, the DISPERSE database.
View Article and Find Full Text PDFWe present the results of the first-ever DNA barcoding study of odonates from the Maltese Islands. In total, 10 morphologically identified species were collected during a two-week long expedition in 2018. Eighty cytochrome oxidase subunit I (COI) barcodes were obtained from the collected specimens.
View Article and Find Full Text PDFEffective identification of species using short DNA fragments (DNA barcoding and DNA metabarcoding) requires reliable sequence reference libraries of known taxa. Both taxonomically comprehensive coverage and content quality are important for sufficient accuracy. For aquatic ecosystems in Europe, reliable barcode reference libraries are particularly important if molecular identification tools are to be implemented in biomonitoring and reports in the context of the EU Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD).
View Article and Find Full Text PDFIntermittent rivers and ephemeral streams (IRES) are common across Europe and dominate some Mediterranean river networks. In all climate zones, IRES support high biodiversity and provide ecosystem services. As dynamic ecosystems that transition between flowing, pool, and dry states, IRES are typically poorly represented in biomonitoring programmes implemented to characterize EU Water Framework Directive ecological status.
View Article and Find Full Text PDFA comprehensive survey on aquatic and semiaquatic bugs (Heteroptera: Nepomorpha and Gerromorpha) of three Greek holiday islands, Rhodes, Crete and Corfu, was conducted from 2007 to 2010 at 237 localities. In this paper, hundreds of detailed records for 30 taxa in nine families are given. The occurrences of Rhagovelia infernalis africana Lundblad, 1936 and Velia mariae Tamanini, 1971 are confirmed and recorded for the first time from Europe sensu stricto.
View Article and Find Full Text PDFBased on an earlier observation in the field, we hypothesized that light intensity and horizontally polarized reflected light may strongly influence the flight behaviour of night-active aquatic insects. We assumed that phototaxis and polarotaxis together have a more harmful effect on the dispersal flight of these insects than they would have separately. We tested this hypothesis in a multiple-choice field experiment using horizontal test surfaces laid on the ground.
View Article and Find Full Text PDFDispersal flight is the most important and almost the only way for primary aquatic insects to find new water habitats. During a 30-week-long project, we monitored the flight dispersal behaviour of aquatic beetles and bugs with using highly and horizontally polarizing agricultural black plastic sheets laid onto the ground. Based on the flight data of more than 45,000 individuals and 92 species, we explored and described eight different diel flight activity patterns.
View Article and Find Full Text PDFHorizontal black surfaces are usually very attractive to polarotactic aquatic insects, since they generally reflect highly and horizontally polarized light, and thus imitate water surfaces. We monitored highly polarizing black burnt-up stubble-fields, but surprisingly never found aquatic insects or their carcasses in the ash, although flying polarotactic insects were abundant in the area, which we showed by attracting them to horizontal black plastic sheets. To explain this observation, we measured the reflection-polarization characteristics of burnt-up stubble-fields in the red (650 nm), green (550 nm) and blue (450 nm) parts of the spectrum at three directions of view relative to the solar meridian.
View Article and Find Full Text PDFWe reveal here the visual ecological reasons for the phenomenon that aquatic insects often land on red, black and dark-coloured cars. Monitoring the numbers of aquatic beetles and bugs attracted to shiny black, white, red and yellow horizontal plastic sheets, we found that red and black reflectors are equally highly attractive to water insects, while yellow and white reflectors are unattractive. The reflection-polarization patterns of black, white, red and yellow cars were measured in the red, green and blue parts of the spectrum.
View Article and Find Full Text PDF