Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The HER2 expression status in breast cancer liver metastases is a crucial indicator for the diagnosis, treatment, and prognosis assessment of patients. And typical diagnosis involves assessing the HER2 expression status through invasive procedures like biopsy. However, this method has certain drawbacks, such as being difficult in obtaining tissue samples and requiring long examination periods. To address these limitations, we propose an AI-aided diagnostic model. This model enables rapid diagnosis. It diagnoses a patient's HER2 expression status on the basis of preprocessed images, which is the region of the lesion extracted from a CT image rather than from an actual tissue sample. The algorithm of the model adopts a parallel structure, including a Branch Block and a Trunk Block. The Branch Block is responsible for extracting the gradient characteristics between the tumor sub-environments, and the Trunk Block is for fusing the characteristics extracted by the Branch Block. The Branch Block contains CNN with self-attention, which combines the advantages of CNN and self-attention to extract more meticulous and comprehensive image features. And the Trunk Block is so designed that it fuses the extracted image feature information without affecting the transmission of the original image features. The Conv-Attention is used to calculate the attention in the Trunk Block, which uses kernel dot product and is responsible for providing the weight for the self-attention in the process of using convolution induced deviation calculation. Combined with the structure of the model and the method used, we refer to this model as TBACkp. The dataset comprises the enhanced abdominal CT images of 151 patients with liver metastases from breast cancer, together with the corresponding HER2 expression levels for each patient. The experimental results are as follows: (AUC: 0.915, ACC: 0.854, specificity: 0.809, precision: 0.863, recall: 0.881, F1-score: 0.872). The results demonstrate that this method can accurately assess the HER2 expression status in patients when compared with other advanced deep learning model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.108002 | DOI Listing |