98%
921
2 minutes
20
N-acetyl-d-glucosamine (GlcNAc) is a commercially important amino sugar for its wide range of applications in pharmaceutical, food, cosmetics and biofuel industries. In nature, GlcNAc is polymerised into chitin biopolymer, which is one of the major constituents of fungal cell wall and outer shells of crustaceans. Sea food processing industries generate a large volume of chitin as biopolymeric waste. Because of its high abundance, chitinaceous shellfish wastes have been exploited as one of the major precursor substrates of GlcNAc production, both in chemical and enzymatic means. Nevertheless, the current process of GlcNAc extraction from shellfish wastes generates poor turnover and attracts environmental hazards. Moreover, GlcNAc isolated from shellfish could not be prescribed to certain groups of people because of the allergic nature of shell components. Therefore, an alternative route of GlcNAc production is advocated. With the advancement of metabolic construction and synthetic biology, microbial synthesis of GlcNAc is gaining much attention nowadays. Several new and cutting-edge technologies like substrate co-utilization strategy, promoter engineering, and CRISPR interference system were proposed in this fascinating area. The study would put forward the potential application of microbial engineering in the production of important pharmaceuticals. Very recently, autotrophic fermentation of GlcNAc synthesis has been proposed. The metabolic engineering approaches would offer great promise to mitigate the issues of low yield and high production cost, which are major challenges in microbial bio-processes industries. Further process optimization, optimising metabolic flux, and efficient recovery of GlcNAc from culture broth, should be investigated in order to achieve a high product titer. The current study presents a comprehensive review on microbe-based eco-friendly green methods that would pave the way towards the development of future research directions in this field for the designing of a cost-effective fermentation process on an industrial setup.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2024.109039 | DOI Listing |
J Ind Microbiol Biotechnol
September 2025
Department of Biochemistry University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Glycocins are a growing family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are O- and/or S-glycosylated. Using a sequence similarity network of putative glycosyltransferases, the thg biosynthetic gene cluster was identified in the genome of Thermoanaerobacterium thermosaccharolyticum. Heterologous expression in Escherichia coli showed that the glycosyltransferase (ThgS) encoded in the biosynthetic gene cluster (BGC) adds N-acetyl-glucosamine (GlcNAc) to Ser and Cys residues of ThgA.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Pediatric Nephrology, Radboud University Medical Centre, Amalia Children's Hospital, Nijmegen, Netherlands.
Hemolytic uremic syndrome caused by an invasive infection (SP-HUS) is a rare and severe disease that primarily affects children under two years of age. The pathophysiology of SP-HUS remains poorly understood, and treatment is largely supportive. Complement factor H (FH) is a key regulator of the alternative pathway of the complement system.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.
View Article and Find Full Text PDFJ Adv Res
September 2025
Center for Gene and Cell Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School of Advanced Bioconvergence, University of Science and Technology (UST), Daejeon 34113, Republic of Korea. Electronic address:
Introduction: Natural killer (NK) cells are essential effectors in immune surveillance and cancer immunotherapy, but their function is often compromised by metabolic stress and environmental factors within the tumor microenvironment (TME). O-GlcNAcylation, a post-translational modification, regulates immune responses, yet its impact on NK cell function and therapeutic potential in immune cell-based therapies remains underexplored.
Objectives: This study investigates the effects of O-GlcNAcylation on NK cell-mediated cytotoxicity and its potential as a therapeutic target to enhance tumor immunity.
Carbohydr Res
September 2025
Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama, 338-8570, Japa
Multivalent interactions between lectins and glycans are crucial for biological recognition; however, predicting functional inhibition based on binding affinity remains challenging. Herein, we investigated a series of structurally defined N-acetylglucosamine (GlcNAc)-functionalized dendrimers (1a-1c and 2a-2c) to examine how spatial orientation and temperature influenced the inhibition of wheat germ agglutinin (WGA). Using enzyme-linked lectin assays (ELLAs), we observed biphasic inhibition profiles for all the dendrimers, characterized by an initial enhancement of WGA binding at low concentrations, followed by effective inhibition at higher concentrations.
View Article and Find Full Text PDF