Kidney stone (urolithiasis) is a prevalent global health issue with limited safe and cost-effective treatment options. This study investigates the anti-urolithiasis potential of sericin, a silk protein sustainably extracted from Bombyx mori cocoons, and its innovative nanoparticle formulations. Biocompatible sericin, sericin nanoparticles, and sericin coupled with a phytate chelator were developed and meticulously characterized.
View Article and Find Full Text PDFGastroenteritis caused by non-typhoidal still prevails resulting in several recent outbreaks affecting many people worldwide. The presence of invasive non-typhoidal is exemplified by several characteristic symptoms and their severity relies on prominent risk factors. The persistence of this pathogen can be attributed to its broad host range, complex pathogenicity and virulence and adeptness in survival under challenging conditions inside the host.
View Article and Find Full Text PDFN-acetyl-d-glucosamine (GlcNAc) is a commercially important amino sugar for its wide range of applications in pharmaceutical, food, cosmetics and biofuel industries. In nature, GlcNAc is polymerised into chitin biopolymer, which is one of the major constituents of fungal cell wall and outer shells of crustaceans. Sea food processing industries generate a large volume of chitin as biopolymeric waste.
View Article and Find Full Text PDFBacterial microcompartments (MCPs) are proteinaceous organelles that natively encapsulates the enzymes, substrates, and cofactors within a protein shell. They optimize the reaction rates by enriching the substrate in the vicinity of enzymes to increase the yields of the product and mitigate the outward diffusion of the toxic or volatile intermediates. The shell protein subunits of MCP shell are selectively permeable and have specialized pores for the selective inward diffusion of substrates and products release.
View Article and Find Full Text PDFBacterial microcompartments (MCPs) are widespread protein-based organelles composed of metabolic enzymes encapsulated within a protein shell. The function of MCPs is to optimize metabolic pathways by confining toxic and/or volatile pathway intermediates. A major class of MCPs known as glycyl radical MCPs has only been partially characterized.
View Article and Find Full Text PDFMicrobiology (Reading)
December 2019
Bacterial microcompartments (MCPs) are protein-based organelles that consist of metabolic enzymes encapsulated within a protein shell. The function of MCPs is to optimize metabolic pathways by increasing reaction rates and sequestering toxic pathway intermediates. A substantial amount of effort has been directed toward engineering synthetic MCPs as intracellular nanoreactors for the improved production of renewable chemicals.
View Article and Find Full Text PDFBacterial choline degradation in the human gut has been associated with cancer and heart disease. In addition, recent studies found that a bacterial microcompartment is involved in choline utilization by and species. However, many aspects of this process have not been fully defined.
View Article and Find Full Text PDFBacterial microcompartments (MCPs) are extremely large proteinaceous organelles that consist of an enzymatic core encapsulated within a complex protein shell. A key question in MCP biology is the nature of the interactions that guide the assembly of thousands of protein subunits into a well-ordered metabolic compartment. In this report, we show that the N-terminal 37 amino acids of the PduB protein have a critical role in binding the shell of the 1,2-propanediol utilization (Pdu) microcompartment to its enzymatic core.
View Article and Find Full Text PDFBacterial microcompartments (MCPs) are complex organelles that consist of metabolic enzymes encapsulated within a protein shell. In this study, we investigate the function of the PduJ MCP shell protein. PduJ is 80% identical in amino acid sequence to PduA and both are major shell proteins of the 1,2-propanediol (1,2-PD) utilization (Pdu) MCP of Salmonella.
View Article and Find Full Text PDFMicrobiology (Reading)
May 2015
DD-carboxypeptidases (DD-CPases) are low-molecular-mass (LMM) penicillin-binding proteins (PBPs) that are mainly involved in peptidoglycan remodelling, but little is known about the dd-CPases of mycobacteria. In this study, a putative DD-CPase of Mycobacterium smegmatis, MSMEG_2433 is characterized. The gene for the membrane-bound form of MSMEG_2433 was cloned and expressed in Escherichia coli in its active form, as revealed by its ability to bind to the Bocillin-FL (fluorescent penicillin).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2015
Bacterial microcompartments are widespread prokaryotic organelles that have important and diverse roles ranging from carbon fixation to enteric pathogenesis. Current models for microcompartment function propose that their outer protein shell is selectively permeable to small molecules, but whether a protein shell can mediate selective permeability and how this occurs are unresolved questions. Here, biochemical and physiological studies of structure-guided mutants are used to show that the hexameric PduA shell protein of the 1,2-propanediol utilization (Pdu) microcompartment forms a selectively permeable pore tailored for the influx of 1,2-propanediol (the substrate of the Pdu microcompartment) while restricting the efflux of propionaldehyde, a toxic intermediate of 1,2-propanediol catabolism.
View Article and Find Full Text PDFBacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis.
View Article and Find Full Text PDFOuter membrane vesicles (OMVs) are released from Pseudomonas syringae pv. tomato T1 (Pst T1) during their normal growth. These extracellular compartments are comprised of a complete set of biological macromolecules that includes proteins, lipids, lipopolysaccharides, etc.
View Article and Find Full Text PDFOf the five dd-carboxypeptidases in Escherichia coli, only PBP5 demonstrates its physiological significance by maintaining cell shape and intrinsic beta-lactam resistance. DacD can partially compensate for the lost beta-lactam resistance in PBP5 mutant, although its biochemical reason is unclear. To understand the mechanism(s) underlying such behaviour, we constructed soluble DacD (sDacD) and compared its biophysical and biochemical properties with those of sPBP5, in vitro.
View Article and Find Full Text PDFAntarctic bacteria are adapted to the extremely low temperature. The transcriptional and translational machineries of these bacteria are adapted to the sub-zero degrees of temperature. Studies directed towards identifying the changes in the protein profiles during changes in the growth temperatures of an Antarctic bacterium Pseudomonas syringae Lz4W may help in understanding the molecular basis of cold adaptation.
View Article and Find Full Text PDFMicrobiology (Reading)
September 2011
Escherichia coli PBP5, PBP6 and DacD, encoded by dacA, dacC and dacD, respectively, share substantial amino acid identity and together constitute ~50 % of the total penicillin-binding proteins of E. coli. PBP5 helps maintain intrinsic β-lactam resistance within the cell.
View Article and Find Full Text PDFOut of the four DD-carboxypeptidases (DD-CPases) in Escherichia coli, only penicillin-binding protein (PBP) 5 performs physiological functions such as maintaining cell shape; its nearest homolog, PBP6, cannot perform such functions. Moreover, unlike PBP6, PBP5 efficiently processes both beta-lactam, and peptide substrates. The crystal structure of PBP5 reveals strong inter-residue hydrogen-bonding interactions around the active site, which favor its catalytic activity.
View Article and Find Full Text PDFInt J Antimicrob Agents
March 2010
Escherichia coli penicillin-binding protein 5 (PBP5), a dd-carboxypeptidase encoded by the dacA gene, plays a key role in the maintenance of cell shape. Although PBP5 shares one of the highest copy numbers among the PBPs, it is not essential for cell survival. To determine the effect of this redundant PBP on beta-lactam antibiotic susceptibility, PBP5 was deleted from O-antigen-negative E.
View Article and Find Full Text PDFPenicillin-binding protein (PBP) 5 plays a critical role in maintaining normal cellular morphology in mutants of Escherichia coli lacking multiple PBPs. The most closely related homologue, PBP 6, is 65% identical to PBP 5, but is unable to substitute for PBP 5 in returning these mutants to their wild-type shape. The relevant differences between PBPs 5 and 6 are localized in a 20-amino acid stretch of domain I in these proteins, which includes the canonical KTG motif at the active site.
View Article and Find Full Text PDFTrends Microbiol
July 2008
Bacterial cell shape is, in part, mediated by the peptidoglycan (murein) sacculus. Penicillin-binding proteins (PBPs) catalyze the final stages of murein biogenesis and are the targets of beta-lactam antibiotics. Several low molecular mass PBPs including PBP4, PBP5, PBP6 and DacD seem to possess DD-carboxypeptidase (DD-CPase) activity, but these proteins are dispensable for survival in laboratory culture.
View Article and Find Full Text PDF