Potential utility of bacterial protein nanoreactor for sustainable in-situ biocatalysis in wide range of bioprocess conditions.

Enzyme Microb Technol

Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India. Electronic address:

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacterial microcompartments (MCPs) are proteinaceous organelles that natively encapsulates the enzymes, substrates, and cofactors within a protein shell. They optimize the reaction rates by enriching the substrate in the vicinity of enzymes to increase the yields of the product and mitigate the outward diffusion of the toxic or volatile intermediates. The shell protein subunits of MCP shell are selectively permeable and have specialized pores for the selective inward diffusion of substrates and products release. Given their attributes, MCPs have been recently explored as potential candidates as subcellular nano-bioreactor for the enhanced production of industrially important molecules by exercising pathway encapsulation. In the current study, MCPs have been shown to sustain enzyme activity for extended periods, emphasizing their durability against a range of physical challenges such as temperature, pH and organic solvents. The significance of an intact shell in conferring maximum protection is highlighted by analyzing the differences in enzyme activities inside the intact and broken shell. Moreover, a minimal synthetic shell was designed with recruitment of a heterologous enzyme cargo to demonstrate the improved durability of the enzyme. The encapsulated enzyme was shown to be more stable than its free counterpart under the aforementioned conditions. Bacterial MCP-mediated encapsulation can serve as a potential strategy to shield the enzymes used under extreme conditions by maintaining the internal microenvironment and enhancing their cycle life, thereby opening new means for stabilizing, and reutilizing the enzymes in several bioprocess industries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2023.110354DOI Listing

Publication Analysis

Top Keywords

conditions bacterial
8
shell
6
enzyme
5
potential utility
4
utility bacterial
4
bacterial protein
4
protein nanoreactor
4
nanoreactor sustainable
4
sustainable in-situ
4
in-situ biocatalysis
4

Similar Publications

Objectives: Complement factor I (CFI) deficiency is a rare condition that can present with fulminant relapsing CNS autoinflammation. In this report, we highlight the utility of genetic testing in unexplained CNS autoinflammation.

Methods: This case report describes a young adult with partial CFI deficiency, presenting with acute hemorrhagic leukoencephalitis and longitudinally extensive transverse myelitis.

View Article and Find Full Text PDF

Background: Parasite antigens and plasma lipopolysaccharide (LPS) levels from luminal origin in visceral leishmaniasis (VL) patients are correlated with cellular activation and low CD4+T cell counts.

Objectives: Our aim was to verify whether Leishmania infantum infection damages the intestinal barrier and whether combination antimonial/antibiotic contributes to the reduction of LPS levels and immune activation.

Methods: Golden hamsters were grouped in: G1-uninfected; G2-infected with L.

View Article and Find Full Text PDF

The contamination of dental curing light tips was evaluated before and after treatment and after their use and disinfection. The influence of a plastic protective barrier over the flexural strength and the modulus of elasticity of resin composites were also analyzed. Microbiological sampling was conducted at initial contamination (T0), in Log 10 CFU/4 mL; after dental treatment (T1); and after disinfection with 70% ethanol (v/v) (T2).

View Article and Find Full Text PDF

Amplicon sequencing is a popular method for understanding the diversity of bacterial communities in samples containing multiple organisms as exemplified by 16S rRNA sequencing. Another application of amplicon sequencing includes multiplexing both primer sets and samples, allowing sequencing of multiple targets in multiple samples in the same sequencing run. Multiple tools exist to process the amplicon sequencing data produced via the short-read Illumina platform, but there are fewer options for long-read Oxford Nanopore Technologies (ONT) sequencing, or for processing data from environmental surveillance or other sources with many different organisms.

View Article and Find Full Text PDF

Cryo-EM structure of a type VI secretion system-delivered membrane-depolarizing toxin involved in bacterial antagonism.

Cell Rep

September 2025

Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ON L8S 4K

Many Gram-negative bacteria use type VI secretion systems (T6SSs) to deliver toxic effector proteins into neighboring cells. Proteins in the VasX toxin family form ion-permeable channels in the bacterial cytoplasmic membrane that dissipate the proton motive force, thereby interfering with essential physiological processes. However, the structure of any VasX family effector has remained unknown.

View Article and Find Full Text PDF