Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Semiconductor-based photocatalysis has attracted significant interest due to its capacity to directly exploit solar energy and generate solar fuels, including water splitting, CO reduction, pollutant degradation, and bacterial inactivation. However, achieving the maximum efficiency in photocatalytic processes remains a challenge owing to the speedy recombination of electron-hole pairs and the limited use of light. Therefore, significant endeavours have been devoted to addressing these issues. Specifically, well-designed heterojunction photocatalysts have been demonstrated to exhibit enhanced photocatalytic activity through the physical distancing of electron-hole pairs generated during the photocatalytic process. In this review, we provide a systematic discussion ranging from fundamental mechanisms to material strategies, focusing on TiO-based heterojunction photocatalysts. Current efforts are focused on developing heterojunction photocatalysts based on TiO for a variety of photocatalytic applications, and these projects are explained and assessed. Finally, we offer a concise summary of the main insights and challenges in the utilization of TiO-based heterojunction photocatalysts for photocatalysis. We expect that this review will serve as a valuable resource to improve the efficiency of TiO-based heterojunctions for energy generation and environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr04534jDOI Listing

Publication Analysis

Top Keywords

heterojunction photocatalysts
16
fundamental mechanisms
8
mechanisms material
8
material strategies
8
electron-hole pairs
8
tio-based heterojunction
8
charge transfer
4
tio-based
4
transfer tio-based
4
tio-based photocatalysis
4

Similar Publications

Excessive fossil fuel combustion has accelerated renewable energy development, with hydrogen energy emerging as a promising alternative due to its high energy density and environmental compatibility. Photocatalytic hydrogen production through solar energy conversion represents a viable approach for sustainable development. Metal-organic frameworks (MOFs) have garnered significant research interest owing to their structural tunability, well-defined catalytic sites, and post-synthetic modification capabilities.

View Article and Find Full Text PDF

The persistent presence of Metronidazole (MTZ), a commonly used antibiotic, in water bodies is a serious environmental and health concern because of its genotoxic and carcinogenic potential. Here, we report an effective visible-light photocatalyst system comprising an S-scheme glycine-modified TiO/FeO heterojunction immobilized on chitosan-polyacrylonitrile nanofibers. The photocatalyst nanocomposite was synthesized through a sol-gel and ultrasonication process coupled with electrospinning-assisted immobilization.

View Article and Find Full Text PDF

Advancing metal-organic frameworks and covalent organic frameworks for photocatalytic CO reduction.

Chem Commun (Camb)

September 2025

Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, Republic of Korea.

Increasing atmospheric carbon dioxide concentration necessitates innovative approaches to transform CO into valuable compounds utilizing solar energy. The photocatalytic CO reduction reaction (PC CRR) offers a sustainable solution, yet wide band gaps, rapid electron-hole recombination, and poor CO adsorption capacity limit traditional metal oxide semiconductors for the PC CRR. This review systematically evaluates recent engineering advances in metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) as efficient photocatalysts for the PC CRR.

View Article and Find Full Text PDF

Bidirectional carrier channels boost photocatalytic hydrogen evolution over NiO/CdMnS/TiCT ternary heterojunction.

J Colloid Interface Sci

September 2025

College of Chemistry & Chemical Engineering, Yan'an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an 716000, China. Electronic address:

Hydrogen evolution reaction (HER) driven by solar energy has attracted considerable attention due to its outstanding efficiency, environmental compatibility, and sustainability. Regrettably, the sluggish progress of the HER and the limitations in charge separation efficiency impede its practical photocatalysis. Herein, a two-step electrostatic self-assembly approach is adopted to construct NiO/CdMnS/TiCT (NO/CMS/TCT) ternary heterojunction with bidirectional carrier channels for boost photogenerated separation and oriented carrier accumulation.

View Article and Find Full Text PDF

To improve the utilization of solar energy and the efficiency of photocatalytic organic pollutant degradation, novel Z-scheme heterojunctions with high visible light catalytic performances have been widely developed. Herein, a novel Z-scheme BiFeO/Ag/g-CN heterojunction with a hierarchical 1D/0D/2D structure and visible light absorption was constructed by matching the suitable band structure between 1D BiFeO and 2D g-CN and employing the localized surface plasmon resonance (LSPR) effect of 0D Ag nanoparticles. BiFeO nanofibers were synthesized the electrospinning technique, providing short electron transport paths and visible light absorption range for g-CN.

View Article and Find Full Text PDF