Pumping Small Molecules Selectively through an Energy-Assisted Assembling Process at Nonequilibrium States.

J Am Chem Soc

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In living organisms, precise control over the spatial and temporal distribution of molecules, including pheromones, is crucial. This level of control is equally important for the development of artificial active materials. In this study, we successfully controlled the distribution of small molecules in the system at nonequilibrium states by actively transporting them, even against the apparent concentration gradient, with high selectivity. As a demonstration, in the aqueous solution of acid orange (AO7) and TMCCOOH, we found that AO7 molecules can coassemble with transient anhydride (TMCCO)O to form larger assemblies in the presence of chemical fuel 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC). This led to a decrease in local free AO7 concentration and caused AO7 molecules from other locations in the solution to move toward the assemblies. Consequently, AO7 accumulates at the location where EDC was injected. By continuously injecting EDC, we could maintain a stable high value of the apparent AO7 concentration at the injection point. We also observed that this process which operated at nonequilibrium states exhibited high selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c12228DOI Listing

Publication Analysis

Top Keywords

nonequilibrium states
12
small molecules
8
high selectivity
8
ao7 molecules
8
ao7 concentration
8
ao7
6
molecules
5
pumping small
4
molecules selectively
4
selectively energy-assisted
4

Similar Publications

Exact Nonequilibrium Steady State of XXZ Circuits Boundary Driven with Arbitrary Resets or Fields.

Phys Rev Lett

August 2025

University of Ljubljana, Department of Physics, Faculty of Mathematics and Physics, Jadranska 19, SI-1000 Ljubljana, Slovenia.

We propose a spatially inhomogeneous matrix product Ansatz for an exact many-body density operator of a boundary-driven XXZ quantum circuit. The Ansatz has formally infinite bond dimension and is fundamentally different from previous constructions. The circuit is driven by a pair of reset quantum channels applied on the boundary qubits, which polarize the qubits to arbitrary pure target states.

View Article and Find Full Text PDF

Homogeneous Catalysts for Hydrogenative PHIP Used in Biomedical Applications.

Anal Sens

January 2025

Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390 United States.

At present, two competing hyperpolarization (HP) techniques, dissolution dynamic nuclear polarization (DNP) and parahydrogen (para-H) induced polarization (PHIP), can generate sufficiently high liquid state C signal enhancement for in vivo studies. PHIP utilizes the singlet spin state of para-H to create non-equilibrium spin populations. In hydrogenative PHIP, para-H is irreversibly added to unsaturated precursors, typically in the presence of a homogeneous catalyst.

View Article and Find Full Text PDF

We report the observation of negative differential resistance (NDR) in single-atom single-electron devices based on arsenic, phosphorus and potassium dopants implanted in a silicon host matrix. All devices exhibit NDR, with the potassium-based one exhibiting NDR at room temperature because of the larger charging and confinement energies. Our experimental results are reproduced with a simple model that assumes sequential electron tunnelling through two series-connected charge centres, each having two discrete energy levels.

View Article and Find Full Text PDF

On-chip terahertz (THz) spectroscopy has attracted growing attention because of its capability of measuring samples far smaller than the Rayleigh diffraction limit. The technique also allows the investigation of nonlinear responses of materials, which is indispensable for the development of ultrafast devices operating with a THz bandwidth. Here, we report the development of an on-chip THz-pump THz-probe spectroscopy technique that enables the study of ultrafast electrical-pulse-induced nonequilibrium phenomena.

View Article and Find Full Text PDF

Interactions Between Active Matters and Endogenous Fields.

Adv Mater

September 2025

Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, Barcelona, 08028, Spain.

Active matter, encompassing both natural and artificial systems, utilizes environmental energy to sustain autonomous motion, exhibiting unique non-equilibrium behaviors. Artificial active matter (AAM), such as nano/micromotors, holds transformative potential in precision medicine by enhancing drug delivery and enabling targeted therapeutic interventions. Under the demand for increasing intelligence in AAM, controlling their non-equilibrium processes within complex in vivo environments presents significant challenges.

View Article and Find Full Text PDF