Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Treatment of diabetic neuropathic pain does not change the natural history of neuropathy. Improved glycemic control is the recommended treatment in these cases, given that no specific treatment for the underlying nerve damage is available, so far. In the present study, the potential neuroprotective effect of pentoxifylline in streptozotocin (50 mg/kg) induced diabetic neuropathy in rats was investigated.

Methods: Pentoxifylline was administered at doses equivalent to 50, 100 & 200 mg/kg, in drinking water, starting one week after streptozotocin injection and for 7 weeks. Mechanical allodynia, body weight and blood glucose level were assessed weekly. Epidermal thickness of the footpad skin, and neuroinflammation and vascular alterations markers were assessed.

Results: Tactile allodynia was less in rats that received pentoxifylline at doses of 100 and 200 mg/kg (60 % mechanical threshold increased by 48 % and 60 %, respectively). The decrease in epidermal thickness of footpad skin was almost completely prevented by the same doses. This was associated with a decrease in spinal tumor necrosis factor alpha (TNFα) and nuclear factor kappa B levels and a decrease in microglial ionized calcium binding adaptor molecule 1 immunoreactivity, compared to the control diabetic group. In sciatic nerve, there was decrease in TNF-α and vascular endothelial growth factor levels and intercellular adhesion molecule immunoreactivity.

Conclusion: Pentoxifylline showed a neuroprotective effect in streptozotocin-induced diabetic neuropathy, which was associated with a suppression of both the inflammatory and vascular pathogenic pathways that was not associated with a hypoglycemic effect. Thus, it may represent a potential neuroprotective drug for diabetics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.111533DOI Listing

Publication Analysis

Top Keywords

diabetic neuropathy
12
neuroprotective pentoxifylline
8
inflammatory vascular
8
vascular alterations
8
potential neuroprotective
8
100 200 mg/kg
8
epidermal thickness
8
thickness footpad
8
footpad skin
8
diabetic
5

Similar Publications

Assessment and management of chronic venous, arterial, and diabetic wounds in older adults.

Semin Vasc Surg

September 2025

Division of Vascular and Endovascular Surgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY; Comprehensive Wound Care Healing and Hyperbaric, Department of Surgery, Northwell Health System, 270-05 76(th) Avenue, New Hyde Park, NY 11040. Electronic address:

Nonhealing wounds are increasingly prevalent, present in 1% to 2% of the global population, with higher incidence in geriatric patients. These chronic wounds pose challenges to older adult patients owing to physiologic changes that hinder healing, common medical comorbidities that promote inflammation and damage microcirculation, poor nutritional status and mobility, and psychosocial barriers to receiving care. In this literature review, the epidemiology, pathophysiology, systems costs, and management of chronic venous leg ulcers, arterial ulcers, and diabetic foot wounds in older adult patients are investigated.

View Article and Find Full Text PDF

Painful diabetic neuropathy (PDN), a severe microvascular complication of diabetes, is closely associated with neuroinflammation. This study aimed to investigate the mechanism of circ_0002590 in neuroinflammation associated with PDN.The Schwann cells (HEI193) were treated with high glucose (HG, 150 mM) to simulate the diabetic microenvironment.

View Article and Find Full Text PDF

Diabetes has emerged as a critical global health issue, with its associated complications posing a severe threat to patients' quality of life. Current research demonstrates that imbalance in mitochondrial dynamics and autophagic dysregulation play pivotal roles in the pathogenesis of diabetic complications, particularly in diabetic cardiomyopathy, nephropathy, peripheral neuropathy and retinopathy. Strategic modulation of mitochondrial function and autophagic activity represents a promising therapeutic approach for managing diabetic complications.

View Article and Find Full Text PDF

Diabetes mellitus is a metabolic condition leading to elevated blood glucose levels due to insulin deficiency, insulin resistance, or a combination of both. Chronically raised blood glucose levels can lead to a broad variety of microvascular and macrovascular complications. Neurological disorders are a common manifestation of diabetes mellitus, and poorly controlled diabetes mellitus frequently causes peripheral sensorimotor polyneuropathy and autonomic neuropathy.

View Article and Find Full Text PDF

Introduction: The aim of this study was to evaluate the clinical outcomes of spinal cord stimulation (SCS) in patients with painful diabetic peripheral neuropathy (PDPN).

Materials And Methods: Ninety-two patients underwent permanent SCS implantation and completed a 6-month post-operative follow-up. The primary endpoint was patient amputation rate, and secondary endpoints included Quality of Life (QOL LC V2.

View Article and Find Full Text PDF