Bioengineered Neutrophils for Smart Response in Brain Infection Management.

Adv Mater

National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, C

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Brain infections, frequently accompanied by significant inflammation, necessitate comprehensive therapeutic approaches targeting both infections and associated inflammation. A major impediment to such combined treatment is the blood-brain barrier (BBB), which significantly restricts therapeutic agents from achieving effective concentrations within the central nervous system. Here, a neutrophil-centric dual-responsive delivery system, coined "CellUs," is pioneered. This system is characterized by live neutrophils enveloping liposomes of dexamethasone, ceftriaxone, and oxygen-saturated perfluorocarbon (Lipo@D/C/P). CellUs is meticulously engineered to co-deliver antibiotics, anti-inflammatory agents, and oxygen, embodying a comprehensive strategy against brain infections. CellUs leverages the intrinsic abilities of neutrophils to navigate through BBB, accurately target infection sites, and synchronize the release of Lipo@D/C/P with local inflammatory signals. Notably, the incorporation of ultrasound-responsive perfluorocarbon within Lipo@D/C/P ensures the on-demand release of therapeutic agents at the afflicted regions. CellUs shows considerable promise in treating Staphylococcus aureus infections in mice with meningitis, particularly when combined with ultrasound treatments. It effectively penetrates BBB, significantly eliminates bacteria, reduces inflammation, and delivers oxygen to the affected brain tissue, resulting in a substantial improvement in survival rates. Consequently, CellUs harnesses the natural chemotactic properties of neutrophils and offers an innovative pathway to improve treatment effectiveness while minimizing adverse effects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202311661DOI Listing

Publication Analysis

Top Keywords

brain infections
8
therapeutic agents
8
perfluorocarbon lipo@d/c/p
8
bioengineered neutrophils
4
neutrophils smart
4
smart response
4
brain
4
response brain
4
brain infection
4
infection management
4

Similar Publications

Persisting Lyme Disease in the Pediatric Population.

Clin Pediatr (Phila)

September 2025

Department of Medicine (Infectious Disease), University of Connecticut Health Center, Boston University Medical Center, Falmouth Hospital, Falmouth, MA, USA.

A total of 101 patients with a clinical picture of persisting Lyme disease seen at the University of Connecticut Health Center and Boston Medical Center were recruited for the study to determine whether persistent infection is the likely cause. Brain SPECT imaging and responses to antibiotic treatments were recorded. Patients had more than 5 symptoms lasting more than 6 months.

View Article and Find Full Text PDF

Description of a patient with multiple sclerosis (MS) who underwent immunotherapy with ocrelizumab and suffered a severe course of tick-borne encephalitis (TBE): A 33-year-old man presented with acute cerebellitis with tonsillar herniation. The initial suspected diagnosis of TBE was confirmed after a significant diagnostic delay, likely caused by negative serological testing due to B-cell depletion from ocrelizumab treatment for underlying MS. TBE diagnosis was made using polymerase chain reaction (PCR) and oligo-hybrid capture metagenomic next-generation sequencing (mNGS) of cerebral spinal fluid and brain biopsy samples which yielded a near-full length TBE Virus (TBEV) genome.

View Article and Find Full Text PDF

Background: Devoid of a lymphatic system, the central nervous system (CNS) relies primarily on innate immunity for protection. While these immune responses help to fight pathogens, they can also cause irreversible damage because of the CNS's limited regenerative capacity. Therefore, it is crucial to understand which CNS cells contribute to pathogen clearance but in doing so potentially damage surrounding tissue.

View Article and Find Full Text PDF

Introduction: Toxoplasma gondii is a zoonotic parasite of significant public health concern, particularly in regions where consumption of undercooked meat is common. Despite the importance of sheep as a potential source of human infection, understanding of T. gondii seroprevalence and tissue distribution in sheep in the Red Sea State in Sudan remains limited.

View Article and Find Full Text PDF

Introduction: Breathlessness is a common cause of hospital admission globally and is associated with high mortality, particularly in low-income countries. In sub-Saharan Africa, there is a paucity of data on breathlessness, with existing data focused on individual diseases. There is a need for patient-centred approaches to understand interactions between multiple conditions to address population needs and inform health system responses.

View Article and Find Full Text PDF