98%
921
2 minutes
20
The development of robust adhesive, conductive, and flexible materials has garnered significant attention in the realm of human-machine interface and electronic devices. Conventional preparation methods to achieve these exceptional properties rely on incorporating highly polar raw materials, multiple components, or solvents. However, the overexposure of functional groups and the inherent toxicity of organic solvents often render gels non-stick or potentially biocompatible making them unsuitable for human-contact devices. In this study, a straightforward three-step strategy is devised for preparing responsive adhesive gels without complex components. Structurally conductive poly(N-(2-hydroxyethyl)-acrylamide-co-p-styrene sulfonate hydrate) (PHEAA-NaSS) gels are synthesized by integrating ionic and hydrophilic networks with distinct solvent effects. Initially, the in-suit formed PHEAA-NaSS networks are activated by dimethyl sulfoxide, which substantially increases intramolecular hydrogen bonding and enhances the matrix stretchability and interfacial adhesion. Subsequently, ethanol exchange reduced solvent impact and led to a compact network that limited surface exposure of ionic and hydrophilic groups, resulting in nonstick, robust for convenient storage. Finally, upon contacting with water, the network demonstrates rehydration, resulting in favorable adhesion, biocompatibility, and conductivity. The proposed PHEAA-NaSS/W gels can stably and reliably capture joint motion and electrophysiological signals. Furthermore, this uncomplicated gel preparation method is also applicable to other electrolyte monomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202310731 | DOI Listing |
Chempluschem
September 2025
HCB Physical Chemistry, Henkel AG & Co. KGaA, Henkelstraße 67, 40589, Düsseldorf, Germany.
Surfactants adsorb at interfaces and reduce the interfacial tension. In technical applications, they are typically used as complex mixtures rather than monodisperse systems. These mixtures often include ionic and non-ionic surfactants, with the non-ionic components comprising various monodisperse species.
View Article and Find Full Text PDFACS Omega
August 2025
Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970, Brazil.
This review examines the role of ionic liquids (ILs) in the catalytic carbonation of epoxides for the synthesis of cyclic carbonates, focusing on the key factors that influence reaction efficiency. The nucleophilicity and basicity of the anions in IL catalysts are highlighted as critical components for promoting the cycloaddition reaction with CO. The solubility and ionicity of the ILs also significantly affect the reaction, with higher ionicity leading to better solubilization and catalytic performance.
View Article and Find Full Text PDFMolecules
August 2025
Department of Chemical and Biochemical Engineering, Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
This study investigates key factors affecting the adsorption behavior of proteins on the multimodal chromatographic adsorbent Capto MMC, aiming to enhance selective protein separation strategies. Batch equilibrium experiments were conducted using six model proteins to explore the combined effects of pH, ionic strength, and the nature of salts (kosmotropic and chaotropic) on protein-ligand interactions. Given that the Capto MMC ligand supports multiple interaction modes beyond cation exchange, particular focus was placed on acidic proteins (pI 4-5), which exhibited binding even at moderately elevated pH values-conditions ineffective for conventional cation exchangers.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:
Hypothesis: Water-in-salt electrolytes (WiSEs) are safer alternatives to organic electrolytes in lithium-ion batteries. While surfactants have been proposed as performance enhancing additives, their self-assembly behaviour in these concentrated systems is completely unknown. We hypothesise that ionic surfactants can form micelles in WiSEs with their structure dependent on salt type, salt-to-surfactant ratio, and temperature.
View Article and Find Full Text PDFRSC Adv
August 2025
Petroleum & Gas Engineering Department, University of Thi-Qar 64001 Nasiriyah Iraq
Rapid industrial development has led to the discharge of significant amounts of untreated industrial wastewater into the environment, resulting in substantial effects on natural ecosystems and human health. Consequently, there is a need to develop new environmentally friendly alternatives for water remediation. In this regard, chitosan (CS) aerogels possess high porosity, low density, and biodegradability, and act as effective sorbents for the removal of various ionic pollutants from water, air, and soil.
View Article and Find Full Text PDF