Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper proposes an innovative approach to generate a generalized myocardial ischemia database by modeling the virtual electrophysiology of the heart and the 12-lead electrocardiography projected by the in-silico model can serve as a ready-to-use database for automatic myocardial infarction/ischemia (MI) localization and classification. Although the virtual heart can be created by an established technique combining the cell model with personalized heart geometry to observe the spatial propagation of depolarization and repolarization waves, we developed a strategy based on the clinical pathophysiology of MI to generate a heterogeneous database with a generic heart while maintaining clinical relevance and reduced computational complexity. First, the virtual heart is simplified into 11 regions that match the types and locations, which can be diagnosed by 12-lead ECG; the major arteries were divided into 3-5 segments from the upstream to the downstream based on the general anatomy. Second, the stenosis or infarction of the major or minor coronary artery branches can cause different perfusion drops and infarct sizes. We simulated the ischemic sites in different branches of the arteries by meandering the infarction location to elaborate on possible ECG representations, which alters the infraction's size and changes the transmembrane potential (TMP) of the myocytes associated with different levels of perfusion drop. A total of 8190 different case combinations of cardiac potentials with ischemia and MI were simulated, and the corresponding ECGs were generated by forward calculations. Finally, we trained and validated our in-silico database with a sparse representation classification (SRC) and tested the transferability of the model on the real-world Physikalisch Technische Bundesanstalt (PTB) database. The overall accuracies for localizing the MI region on the PTB data achieved 0.86, which is only 2% drop compared to that derived from the simulated database (0.88). In summary, we have shown a proof-of-concept for transferring an in-silico model to real-world database to compensate for insufficient data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2024.103087DOI Listing

Publication Analysis

Top Keywords

in-silico model
8
virtual heart
8
model real-world
8
database
7
model
5
heart
5
transferable in-silico
4
in-silico augmented
4
augmented ischemic
4
ischemic model
4

Similar Publications

Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.

View Article and Find Full Text PDF

Impact of osteotomy angle on bone failure risk in a modified pull-through approach: a finite element analysis.

BMC Oral Health

September 2025

Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.

Background: A modified pull-through approach represents a promising treatment strategy to access tumors in the posterior oral cavity. The design of the wedge osteotomy plays a key role in preserving postoperative mechanical stability while enabling surgical access. However, the optimal osteotomy design to reduce fracture risk remains unclear.

View Article and Find Full Text PDF

Widefield acoustics heuristic: advancing microphone array design for accurate spatial tracking of echolocating bats.

BMC Ecol Evol

September 2025

Lehrstuhl für Zoologie, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 4, Freising, 85354, Germany.

Accurate three-dimensional localisation of ultrasonic bat calls is essential for advancing behavioural and ecological research. I present a comprehensive, open-source simulation framework-Array WAH-for designing, evaluating, and optimising microphone arrays tailored to bioacoustic tracking. The tool incorporates biologically realistic signal generation, frequency-dependent propagation, and advanced Time Difference of Arrival (TDoA) localisation algorithms, enabling precise quantification of both positional and angular accuracy.

View Article and Find Full Text PDF

Simulated metabolic profiles reveal biases in pathway analysis methods.

Metabolomics

September 2025

Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.

Introduction: Initially developed for transcriptomics data, pathway analysis (PA) methods can introduce biases when applied to metabolomics data, especially if input parameters are not chosen with care. This is particularly true for exometabolomics data, where there can be many metabolic steps between the measured exported metabolites in the profile and internal disruptions in the organism. However, evaluating PA methods experimentally is practically impossible when the sample's "true" metabolic disruption is unknown.

View Article and Find Full Text PDF

The increasing prevalence of depression has highlighted Mindfulness-Based Cognitive Therapy (MBCT) as an effective treatment. However, conventional MBCT has several limitations, including barriers to access, the need for trained professionals, and inconsistent levels of participant engagement. The feasibility of using Virtual Reality (VR) for MBCT has emerged as a promising solution, but further research is needed to assess its therapeutic potential.

View Article and Find Full Text PDF