Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Twisted bilayer (TB) transition metal dichalcogenides (TMDCs) beyond TB-graphene are considered an ideal platform for investigating condensed matter physics, due to the moiré superlattices-related peculiar band structures and distinct electronic properties. The growth of large-area and high-quality TB-TMDCs with wide twist angles would be significant for exploring twist angle-dependent physics and applications, but remains challenging to implement. Here, we propose a reconfiguring nucleation chemical vapor deposition (CVD) strategy for directly synthesizing TB-MoS with twist angles from 0° to 120°. The twist angles-dependent Moiré periodicity can be clearly observed, and the interlayer coupling shows a strong relationship to the twist angles. Moreover, the yield of TB-MoS in bilayer MoS and density of TB-MoS are significantly improved to 17.2% and 28.9 pieces/mm by tailoring gas flow rate and molar ratio of NaCl to MoO. The proposed reconfiguring nucleation approach opens an avenue for the precise growth of TB-TMDCs for both fundamental research and practical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10794196PMC
http://dx.doi.org/10.1038/s41467-023-44598-wDOI Listing

Publication Analysis

Top Keywords

twist angles
16
reconfiguring nucleation
12
twisted bilayer
8
bilayer mos
8
twist
6
nucleation cvd
4
cvd growth
4
growth twisted
4
mos wide
4
wide range
4

Similar Publications

Purpose: Real‑time magnetic resonance-guided radiation therapy (MRgRT) integrates MRI with a linear accelerator (Linac) for gating and adaptive radiotherapy, which requires robust image‑quality assurance over a large field of view (FOV). Specialized phantoms capable of accommodating this extensive FOV are therefore essential. This study compares the performance of four commercial MRI phantoms on a 0.

View Article and Find Full Text PDF

The helical morphology of Type B aortic dissections (TBAD) represents a potentially important geometric biomarker that may influence dissection progression. While three-dimensional surface-based quantification methods provide accurate TBAD helicity assessment, their clinical adoption remains limited by significant processing time. We developed and validated a clinically practical centerline-based helicity quantification method using routine imaging software (TeraRecon) against an extensively validated surface-based method (SimVascular).

View Article and Find Full Text PDF

Objective: This study investigates the biomechanical effects of long-term Tai Chi practice on the knee meniscus through biomechanical experimentation and finite element simulation, focusing on practitioners performing Knee Brushing and Twisting Step. The findings aim to establish scientific guidelines for optimizing exercise protocols in middle-aged and elderly populations.

Methods: Twenty male middle-aged and elderly practitioners were recruited, divided into a Beginner Group (BG: n = 10), and an Experienced Group (EG: n = 10).

View Article and Find Full Text PDF

In the title compound, CHClNO, the acetamide substituent is twisted out of the phenyl plane, forming a dihedral angle of 58.61 (7)°. In the extended structure, each mol-ecule donates two hydrogen bonds [N-H⋯O(carbon-yl) and O-H⋯O(carbon-yl)] and thus also accepts two such hydrogen bonds.

View Article and Find Full Text PDF

Purpose: The kinematic alignment (KA) technique aims to restore native joint anatomy; however, the extent to which it restores posterior femoral condylar morphology after total knee arthroplasty (TKA) remains unclear. The posterior longitudinal overhang in the femoral condyle (PLOF) has been reported to affect clinical outcomes. This study aimed to compare the PLOF after medial pivot TKA performed using KA and mechanical alignment (MA) techniques.

View Article and Find Full Text PDF