A synergetic promotion of surface stability for high-voltage LiCoO by multi-element surface doping: a first-principles study.

Phys Chem Chem Phys

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The utilization of high-voltage LiCoO is an effective approach to break through the bottleneck of practical energy density in lithium ion batteries. However, the structural and interfacial degradations at the deeply delithiated state as well as the associated safety concerns impede the application of high-voltage LiCoO. Herein, we present a synergetic strategy for promoting the surface stability of LiCoO at high voltage by Ti-Mg-Al co-doping and systematically study the effects of the dopants on the surface stability, electronic structure and Li diffusion properties of the LiCoO (104) surface using first-principles calculations. It is found that Ti, Mg and Al dopants can be facilely introduced into the Co sites of the LiCoO (104) surface. Furthermore, the co-doping could significantly stabilize the surface oxygen of LiCoO at a high delithiation state. Particularly, by aggregating Ti-Mg-Al co-dopant distribution in the surface layer, surface oxygen loss is dramatically suppressed. In addition, analysis of the electronic structure indicates that Ti-Mg-Al co-doping can enhance the electronic conductivity of the LiCoO (104) surface and greatly inhibit the charge deficiency of the superficial lattice O atoms at a highly delithiated state. In spite of a negligible improvement in the surface Li diffusion kinetics, the Ti-Mg-Al surface-modified LiCoO is expected to exhibit improved electrochemical performance at high voltage due to its superior surface stability. Our results suggest that aggregating Ti, Mg and Al co-dopant distribution in the surface layer is a promising modulation strategy to synergistically promote the surface oxygen stability of LiCoO at high voltages.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp04130aDOI Listing

Publication Analysis

Top Keywords

surface stability
16
surface
14
high-voltage licoo
12
licoo high
12
licoo 104
12
104 surface
12
surface oxygen
12
licoo
10
delithiated state
8
stability licoo
8

Similar Publications

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

Statistical quantification of SERS signals in microfluidic flow using AuNP-bound polystyrene microparticles.

Anal Sci

September 2025

Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan.

Surface-enhanced Raman scattering (SERS) is a powerful analytical technique; however, its quantitative application has been limited by the instability of substrates and significant signal fluctuations. In this study, we demonstrated that 4-aminobenzenethiol (4-ATP) can be quantitatively detected through statistical analysis of SERS signal intensity distributions obtained using citrate-stabilized AuNPs, biotin-functionalized AuNPs, and gold nanoparticle (AuNP)-bound polystyrene (PS) microparticles. Raman spectra obtained in bulk aqueous solution under static conditions showed that the detection sensitivity of 4-ATP using AuNP-bound PS microparticles was approximately twice that achieved with citrate-stabilized AuNPs or biotin-modified AuNPs.

View Article and Find Full Text PDF

In this study, we investigated the influence of ultrasonic frequency during ultrasound-assisted chemical bath deposition (UCBD) on the surface morphology and electrochemical performance of CoO:MnO@CoMnO composite flexible electrodes for supercapacitor applications. By systematically varying the ultrasonic frequency (1.0-2.

View Article and Find Full Text PDF

MXene/PANI/SnO electrochemical sensor for the determination of 4-aminophenol.

Mikrochim Acta

September 2025

Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Northwest Normal University, Lanzhou, 730070, China.

An electrochemical sensor based on MXene/PANI/SnO nanomaterials was developed for the detection of 4-aminophenol (4-AP). In situ oxidative growth of PANI on the MXene surface effectively hindered the stacking of the lamellae and increased the specific surface area of the composites. Further complexation of tin dioxide with swelling properties of the structure provided adsorption and catalytic sites for 4-AP.

View Article and Find Full Text PDF

Carbon quantum dot-aptamer/MoS nanosheet fluorescent sensor for ultrasensitive, noninvasive cortisol detection.

Anal Bioanal Chem

September 2025

Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.

This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.

View Article and Find Full Text PDF