98%
921
2 minutes
20
A functional role has been ascribed to the human dihydrofolate reductase 2 (DHFR2) gene based on the enzymatic activity of recombinant versions of the predicted translated protein. However, the in vivo function is still unclear. The high amino acid sequence identity (92%) between DHFR2 and its parental homolog, DHFR, makes analysis of the endogenous protein challenging. This paper describes a targeted mass spectrometry proteomics approach in several human cell lines and tissue types to identify DHFR2-specific peptides as evidence of its translation. We show definitive evidence that the DHFR2 activity in the mitochondria is in fact mediated by DHFR, and not DHFR2. Analysis of Ribo-seq data and an experimental assessment of ribosome association using a sucrose cushion showed that the two main Ensembl annotated mRNA isoforms of DHFR2, 201 and 202, are differentially associated with the ribosome. This indicates a functional role at both the RNA and protein level. However, we were unable to detect DHFR2 protein at a detectable level in most cell types examined despite various RNA isoforms of DHFR2 being relatively abundant. We did detect a DHFR2-specific peptide in embryonic heart, indicating that the protein may have a specific role during embryogenesis. We propose that the main functionality of the DHFR2 gene in adult cells is likely to arise at the RNA level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884974 | PMC |
http://dx.doi.org/10.1016/j.mcpro.2024.100718 | DOI Listing |
FASEB J
February 2025
School of Biotechnology, Dublin City University, Dublin 9, Ireland.
Dihydrofolate reductase activity is required in One Carbon Metabolism to ensure that the biologically active form of folate, tetrahydrofolate, is replenished and available as an enzyme cofactor for numerous cellular reactions, including purine and pyrimidine synthesis. Most cellular enzyme activity was thought to arise from the product of the DHFR gene on chromosome 5, with its paralogue DHFR2 (formerly known as DHFRL1; [chromosome 3]), believed to be responsible for mitochondrial dihydrofolate activity based on recombinant versions of the enzyme. In this paper, we confirm our earlier findings that dihydrofolate reductase activity in mitochondria is derived from the DHFR gene rather than DHFR2 and that endogenous DHFR2 protein is not detectable in most cells and tissues.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Screening for marker genes in IS is crucial for its early diagnosis and improvement in clinical outcomes. In the study, the gene expression profiles in the GSE22255 and GSE37587 datasets were extracted from the public database Gene Expression Omnibus.
View Article and Find Full Text PDFMol Cell Proteomics
March 2024
School of Biotechnology, Dublin City University, Dublin, Ireland; DCU Life Sciences Institute, Dublin City University, Dublin, Ireland. Electronic address:
A functional role has been ascribed to the human dihydrofolate reductase 2 (DHFR2) gene based on the enzymatic activity of recombinant versions of the predicted translated protein. However, the in vivo function is still unclear. The high amino acid sequence identity (92%) between DHFR2 and its parental homolog, DHFR, makes analysis of the endogenous protein challenging.
View Article and Find Full Text PDFFront Plant Sci
December 2022
College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China.
The effect of exogenous salicylic acid (SA) on folate metabolism and the related gene regulatory mechanisms is still unclear. In this study, the panicle of foxtail millet treated with different SA concentrations showed that 6 mM SA doubled the 5-methyltetrahydrofolate content compared to that of the control. An untargeted metabolomic analysis revealed that 275 metabolites were enriched in amino acid metabolic pathways.
View Article and Find Full Text PDFJ Biosci Bioeng
October 2019
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:
Since the use of protein therapeutics is effective for treating intractable human diseases, the production of biologic therapeutic agents has dramatically increased over the past three decades. The Chinese hamster ovary (CHO) cell lines are the most commonly used host cell expression system for recombinant protein production. High productive and stable clonal cell lines for recombinant protein production have been established from the DHFR-deficient CHO cell using the dihydrofolate reductase/methotrexate (DHFR/MTX) selection methods.
View Article and Find Full Text PDF