98%
921
2 minutes
20
Dihydrofolate reductase activity is required in One Carbon Metabolism to ensure that the biologically active form of folate, tetrahydrofolate, is replenished and available as an enzyme cofactor for numerous cellular reactions, including purine and pyrimidine synthesis. Most cellular enzyme activity was thought to arise from the product of the DHFR gene on chromosome 5, with its paralogue DHFR2 (formerly known as DHFRL1; [chromosome 3]), believed to be responsible for mitochondrial dihydrofolate activity based on recombinant versions of the enzyme. In this paper, we confirm our earlier findings that dihydrofolate reductase activity in mitochondria is derived from the DHFR gene rather than DHFR2 and that endogenous DHFR2 protein is not detectable in most cells and tissues. Using HepG2 cell lines with modulated expression of either DHFR or DHFR2, we observed an impact of DHFR2 RNA on One Carbon Metabolism mediated through an influence on DHFR expression and activity. Knockout of DHFR2 results in a drop in dihydrofolate reductase activity, lowered 10-formyltetrahydrofolate abundance, downregulation of DHFR mRNA, and diminished DHFR protein abundance. We also observed downregulation of Serine Hydroxymethyltransferase and Thymidylate Synthase, two One Carbon Metabolism enzymes that work with DHFR to support de novo thymidylate synthesis. The expression of recombinant DHFR2 resulted in restoration of DHFR mRNA and protein levels while a DHFR knockdown cell line showed upregulation of DHFR2 RNA. We propose that the DHFR2 gene encodes an RNA molecule that regulates cellular dihydrofolate reductase activity through its impact on DHFR mRNA and protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831416 | PMC |
http://dx.doi.org/10.1096/fj.202401039RR | DOI Listing |
ChemMedChem
September 2025
Laboratorio de Síntesis Orgánica, Facultad de Farmacia, Universidad Central de Venezuela, Apartado 47206, Los Chaguaramos, Caracas, 1041-A, Venezuela.
Due to the advantages of drug repurposing, the discovery of new chemotherapeutic agents for the treatment of Chagas disease based on approved drugs has become a strategy for identifying new candidates. In this work, the antidepressant drug sertraline is reported, with an IC of 7.8 ± 1.
View Article and Find Full Text PDFArch Pharm (Weinheim)
September 2025
Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
Nitazoxanide (NTZ), an FDA-approved drug, served as the framework for synthesizing 22 new broad-spectrum antimicrobial agents from 4-aminosalicylic acid via protection-deprotection, Staudinger reduction, Clauson-Kaas pyrrole synthesis, and nucleophilic substitution. These compounds were evaluated for antibacterial, antimycobacterial, and antitrypanosomal activities. Several compounds, particularly 10, 11, 13, and 22, surpassed the antibacterial activity of NTZ and its active metabolite tizoxanide (TIZ) against all tested pathogens, with MICs ranging from 1.
View Article and Find Full Text PDFMol Biochem Parasitol
September 2025
NyBerMan Bioinformatics Europe, Paddenstoelenlaan 8, Utrecht 3451 PZ, Netherlands.
The emergence of multidrug resistance in Plasmodium falciparum poses a serious threat to antimalarial treatment, particularly with growing resistance to artemisinin-based combination therapies (ACTs) and partner drugs like piperaquine. Mutations in key proteins, such as PfCRT (P. falciparum chloroquine resistance transporter) and PfDHFR (P.
View Article and Find Full Text PDFBioorg Chem
September 2025
Department of Chemistry, Pondicherry University, Kalapet, Puducherry 605014, India. Electronic address:
Malaria, a protozoan parasitic disease caused by Plasmodium species, poses significant health risks in endemic regions and contributes to substantial morbidity and mortality. The intricate lifecycle of the parasite, coupled with the emergence of drug-resistant strains, has severely impacted the effectiveness of current anti-malarial treatments. In response, the present study attempts to demonstrate the blood-stage anti-plasmodial action of 30 triazole derivatives designed based on molecular hybridisation technique, and physicochemical properties.
View Article and Find Full Text PDFCancer Res
September 2025
Memorial Sloan Kettering Cancer Center, New York, United States.
PAX3-FOXO1, an oncogenic transcription factor, drives a particularly aggressive subtype of rhabdomyosarcoma (RMS) by enforcing gene expression programs that support malignant cell states. Here, we showed that PAX3-FOXO1+ RMS cells exhibit altered pyrimidine metabolism and increased dependence on enzymes involved in de novo pyrimidine synthesis, including dihydrofolate reductase (DHFR). Consequently, PAX3-FOXO1+ cells displayed increased sensitivity to inhibition of DHFR by the chemotherapeutic drug methotrexate, and this dependence was rescued by provision of pyrimidine nucleotides.
View Article and Find Full Text PDF