Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Adsorption heat conversion systems can provide heating and cooling across time and space in a more environmentally friendly way. Porous materials are potential candidates for water-based adsorption thermal conversion, in which a metal-organic framework (MOF) has a larger specific surface area and porosity than other porous matrices. However, many MOFs with high saturated adsorption capacity have great deficiencies in performance at low water vapor partial pressure, which hinder their application in adsorption thermal conversion. To improve the water vapor adsorption performance of MIL-101 (Cr), different contents of magnesium chloride, lithium chloride, and lanthanum chloride are mixed into MIL-101 (Cr) by an impregnation method. The properties and structures of the materials are characterized by XRD, SEM, nitrogen adsorption tests, water vapor adsorption tests, TG, FTIR, and so on. The results show that the saturated water vapor adsorption capacity of the sample impregnated with salt increases by 1.5-2.3 times, up to 2.24 g/g, compared with that of the unimpregnated sample. When the partial pressure of water vapor is 0.3, the adsorption capacity increases by 5.3-7.5 times and reaches 0.68 g/g at most. The maximum heat storage density of impregnated samples can be increased by 866 J/g. Impregnated MgCl can greatly improve the adsorption and thermal conversion performance of MOF, and impregnated MgCl and the proper amount of LiCl can further improve the performance of the material system. Our experiments show that the composite impregnation of magnesium chloride and the proper amount of lithium chloride can improve the application performance of the MOF materials in the adsorption thermal conversion process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785282PMC
http://dx.doi.org/10.1021/acsomega.3c06004DOI Listing

Publication Analysis

Top Keywords

water vapor
24
thermal conversion
20
adsorption thermal
16
vapor adsorption
16
adsorption capacity
12
adsorption
11
heat storage
8
partial pressure
8
magnesium chloride
8
lithium chloride
8

Similar Publications

In response to the challenges of nutrient limitations and low efficiency in synthesizing artificial humic acid (AHA) during the resource utilization of agricultural wastes, this study innovatively developed a process that integrates biogas slurry (BS) impregnation pretreatment with hydrothermal humification (HTH). Using steam-exploded corn straw (SES) as the raw material, the impregnation parameters were optimized (40 °C, liquid-to-solid ratio of 15:1, 18 h, 3 cycles), achieving an AHA yield of 40.61 %, which was over 15 % higher than that of the untreated group.

View Article and Find Full Text PDF

Composite films biobased on Prosopis nigra polysaccharide for potential sustainable food packaging.

Int J Biol Macromol

September 2025

Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Laboratorio de Biomateriales y Bioprocesos, Av. Belgrano y Pasaje Caseros, SM de Tucumán, 4000, Tucumán. R, Argentina; Universidad Nacional de Tucumán, Facultad de Bioquímica, Química y Farmacia. Laboratorio de Bioproceso

This study explores the use of plant-derived polysaccharides to develop bio-based films for food-packaging applications. A film-forming solution composed of Prosopis nigra biopolymer (PN-B), carboxymethyl cellulose (CMC), and glycerol was optimized by central composite design (CCD), resulting in two formulations: P1 and P11. The films were subsequently functionalized with silver nanoparticles (AgNPs) synthesized via chemical and biological routes.

View Article and Find Full Text PDF

Fresh walnuts are prone to moisture loss and spoilage after harvest, leading to reduced appearance and sensory quality. In this study, a multifunctional chitosan (CS)-based film was fabricated by incorporating a bacterial cellulose/oregano essential oil (BC/OEO) Pickering emulsion, with hydrogen bonding promoting cohesive matrix integration. The film's physicochemical properties, along with its antimicrobial and antioxidant activities, were systematically evaluated.

View Article and Find Full Text PDF

Background: Catheter ablation of scar-related interatrial septal atrial tachycardias (IAS-ATs) is challenging and can be refractory to conventional unipolar radiofrequency catheter ablation (RFCA).

Aim: This multicenter study investigated the safety and efficacy of bipolar radiofrequency catheter ablation (Bi-RFCA) in patients with IAS-AT refractory to conventional unipolar RFCA.

Methods: Consecutive patients with scar-related IAS-AT refractory to conventional unipolar RFA across three electrophysiological centers were included in the study.

View Article and Find Full Text PDF

Divergent leaf water strategies in three coexisting desert shrub species: from the perspective of hydraulic, stomatal, and economic traits.

Tree Physiol

September 2025

Linze Inland River Basin Research Station, State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Leaves constitute a vital bottleneck in whole-plant water transport, and their water strategies are key determinants of plant competition and productivity. Nonetheless, our knowledge of leaf water strategies predominantly stems from single perspectives (i.e.

View Article and Find Full Text PDF