98%
921
2 minutes
20
Tropical rainforests of Latin America (LATAM) are one of the world's largest carbon sinks, with substantial future carbon sequestration potential and contributing a major proportion of the global supply of forest carbon credits. LATAM is poised to contribute predominantly towards high-quality forest carbon offset projects designed to reduce emissions from deforestation and forest degradation, halt biodiversity loss, and provide equitable conservation benefits to people. Thus, carbon markets, including compliance carbon markets and voluntary carbon markets continue to expand in LATAM. However, the extent of the growth and status of forest carbon markets, pricing initiatives, stakeholders, amongst others, are yet to be explored and extensively reviewed for the entire LATAM region. Against this backdrop, we reviewed a total of 299 articles, including peer-reviewed and non-scientific gray literature sources, from January 2010 to March 2023. Herein, based on the extensive literature review, we present the results and provide perspectives classified into five categories: (i) the status and recent trends of forest carbon markets (ii) the interested parties and their role in the forest carbon markets, (iii) the measurement, reporting and verification (MRV) approaches and role of remote sensing, (iv) the challenges, and (v) the benefits, opportunities, future directions and recommendations to enhance forest carbon markets in LATAM. Despite the substantial challenges, better governance structures for forest carbon markets can increase the number, quality and integrity of projects and support the carbon sequestration capacity of the rainforests of LATAM. Due to the complex and extensive nature of forest carbon projects in LATAM, emerging technologies like remote sensing can enable scale and reduce technical barriers to MRV, if properly benchmarked. The future directions and recommendations provided are intended to improve upon the existing infrastructure and governance mechanisms, and encourage further participation from the public and private sectors in forest carbon markets in LATAM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119921 | DOI Listing |
Plant Commun
September 2025
National Key Laboratory for Development and Utilization of Forest Food Resources, International Research Center for Plant Cell Wall, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
Sci Total Environ
September 2025
Environmental Change Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Finland.
Small lakes are common across the Boreal-Arctic zone. Due to shallowness and high shoreline-surface area ratios, they are abundant in aquatic macrophytes. Vegetated littoral zones have been suggested to count as wetlands when quantifying carbon sinks and sources, but the actual magnitude of aquatic vegetation is seldom quantified.
View Article and Find Full Text PDFJ Environ Manage
September 2025
State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China. Electronic address:
The growing demand for food has led to overuse of land, exacerbating the environmental sustainability of agrifood systems. Insufficient coordination and coupling within agrifood systems (soil-crop-animal-food consumption) reduce material cycle efficiency and limit the system's carbon reduction potential. Given the lack of global research on the impact of system coupling on carbon reduction, the value of regional practice cases is particularly evident.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, N
Hydrogel actuators show tremendous promise for applications in soft robots and artificial muscles. Nevertheless, developing a stretchable hydrogel actuator combining remote actuation and real-time signal feedback remains a challenge. Herein, a light-responsive hydrogel actuator with self-sensing function is fabricated by employing a localized immersion strategy to incorporate polyacrylamide (PAM) hydrogel network into semi-interpenetrating carbon nanotube/2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber/poly(N-isopropylacrylamide) (CNT/TOCN/PNIPAM) hydrogel.
View Article and Find Full Text PDFCurr Biol
September 2025
Oosterland, Netherlands.
Tropical peatlands are globally significant ecosystems for carbon cycling and storage, hydrological regulation, and unique biodiversity. There is a diversity of tropical peatland types globally, but tropical peat-forming ecosystems are typically forested without the Sphagnum groundcover that is often characteristic of high-latitude peatlands. Here, we report on a unique tropical peatland situated in Belize that challenges our understanding of both tropical and extra-tropical peatlands owing to the presence of Sphagnum in the undergrowth.
View Article and Find Full Text PDF