Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Since response to antigen-based immunotherapy relies upon the level of tumor antigen expression we developed an antigen quantification assay using ABC values. Antigen quantification as a clinical assay requires methods for quality control and for interlaboratory and inter-cytometer platform standardization. A single lot of Cytotrol™ Lyophilized Control Cells (Beckman Coulter) used for all studies. The variability in antigen quantification across 4 different instrument platforms in 2 separate laboratories was evaluated. The effect of the antibody clone utilized, importance of custom 1:1 molar ratio (fluorophore to protein, F/P) verses off-the-shelf antibodies, and QuantiBrite PE calibration verses linearity calibration combined with a single point scale transformation with CD4 as reference were determined. Use of single lot control cells allowed validation of reproducibility between flow cytometer platforms and laboratories and allowed assessment of different antibody lots, cocktail preparation, and different antibody clones. Off the shelf antibody preparations provide reproducible estimates of antigen density, however custom 1:1 unimolar antibody preparations should be utilized for definitive measurement of antigen expression.Geometric Mean fluorescent Intensity (GeoMFI) was not comparable across instruments and inter-laboratory. The use of CD4 as the reference marker can minimize variability in ABC values. Comparable antigen quantification is vital in managing patients receiving antigen-based immunotherapy. If this assay is to be utilized in a clinical setting, quality control methods have to be instituted to assure reproducibility and allow validation across laboratories. We have demonstrated that use of a lyophilized cell control is highly valuable in achieveing these goals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10922571PMC
http://dx.doi.org/10.1002/cyto.b.22155DOI Listing

Publication Analysis

Top Keywords

antigen quantification
16
antigen
8
antigen expression
8
antigen-based immunotherapy
8
abc values
8
quality control
8
single lot
8
control cells
8
cd4 reference
8
antibody preparations
8

Similar Publications

Colloidal gold technology in viral diagnostics: Recent innovations, clinical applications, and future perspectives.

Virology

September 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:

Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.

View Article and Find Full Text PDF

Application of droplet digital PCR for the detection of fish DNA in food products.

Food Res Int

November 2025

Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy. Electronic address:

Fish is one of the most common causes of food allergy. The global prevalence of fish allergy has increased over the years as a result of the increased fish consumption. In allergic individuals even small amounts of allergen can trigger a life-threatening allergic reaction.

View Article and Find Full Text PDF

The Ancestral Recombination Graph (ARG), which describes the genealogical history of a sample of genomes, is a vital tool in population genomics and biomedical research. Recent advancements have substantially increased ARG reconstruction scalability, but they rely on approximations that can reduce accuracy, especially under model misspecification. Moreover, they reconstruct only a single ARG topology and cannot quantify the considerable uncertainty associated with ARG inferences.

View Article and Find Full Text PDF

The development of multifunctional nanoplatforms capable of drug delivery and real-time cellular imaging remains a key challenge in cancer theranostics. Herein, we report the development of a casein-protected maleic acid-derived nitrogen-doped carbon dot-based luminescent nanoplatform (MNCD@Cas NPs) for efficient delivery of the anticancer drug doxorubicin hydrochloride (DOX) to triple-negative breast cancer cells. Synthesized via a facile two-step method, the MNCD@Cas NPs exhibit bright blue fluorescence (λ = 390 nm), high water dispersibility, excellent colloidal stability, and substantial DOX loading capacity (∼84%) driven by electrostatic interactions.

View Article and Find Full Text PDF

Molecular recognition and determination of vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), and natriuretic peptide C-type (NPPC) are essential for the early prognosis and diagnosis of cardiovascular diseases, especially in young obese populations. Highly sensitive and selective devices characterized by low Limits of quantification are required for their determination in whole blood. Therefore, a 3D stochastic sensor was developed by immobilizing a chitosan hydrogel onto a carbon paste electrode (used as the support matrix for the hydrogel), which was subsequently modified with gold nanoparticles, multi-walled carbon nanotubes, and β-cyclodextrin (β-CD/AuNPs@MWCNT/CS/CPE).

View Article and Find Full Text PDF